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Abstract

Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful
treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under
1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-
risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of
effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor
phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and
xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent
the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput,
exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge
the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve
from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on
both the tumor cells and other cells within the tumor microenvironment, making development of
preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review,
we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to
therapeutic development.

Keywords: Neuroblastoma, Model, Therapeutic, In vitro, In vivo

Background
Neuroblastoma (NB) is the most common solid, extra-
cranial childhood tumor, accounting for approximately
15% of all childhood cancer deaths [1–3]. Nearly half of
all patients are classified as having high-risk disease, por-
tending poor long-term survival despite multimodal
treatment [4]. NB is a disease of the sympaticoadrenal
lineage of the neural crest, with tumors forming any-
where in the sympathetic nervous system. The tumors
most commonly arise in the abdomen (65%), however,
they also occur in the neck, chest, and pelvis. Approxi-
mately 50% of patients present with evidence of metasta-
sis [5, 6]. Frequent metastasis sites include cortical bone,
bone marrow, liver, and lymph nodes [5, 6]. The disease
exhibits a broad range of clinical behaviors, making
treatment difficult, particularly for high-risk patients [1,
4]. NB typically occurs in children who do not have a

family history of the disease, although there are some
genetic changes frequently associated with the disease
[7]. The most common genetic change is MYCN ampli-
fication, which occurs in approximately 20% of patients,
and is strongly correlated with advanced stage NB [8, 9].
Additionally, deletions of the short arm of chromosome
1 (1p) are found in 25–35% of patients and can be corre-
lated with MYCN amplification [10–12]. Outside of
MYC linked changes, allelic loss of 11q is present in 35–
45% of patients and is also associated with high-risk dis-
ease features [13, 14].
Treatment strategies for NB are guided by the staging

and risk level of the disease. In low risk patients, surgery
is frequently curative. Should recurrence of NB occur, it
is usually local to the original tumor site and can be
managed surgically [14, 15]. Use of cytotoxic therapies is
typically avoided due to the high amount of long-term
complications [16]. Treatment for patients with inter-
mediate or high-risk NB consists of a multimodal ap-
proach including surgical resection, chemotherapy, and
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radiation [4]. Typical treatment of NB begins with resec-
tion of the primary tumor coupled with chemotherapy
and radiation to manage the tumor size and facilitate re-
section [17, 18]. If the tumor is too large for surgical re-
section, an initial induction treatment with
chemotherapy is utilized to shrink the tumor. Chemo-
therapies typically used include doxorubicin, vincristine,
cisplatin, etoposide, and cyclophosphamide [19]. Stem
cell rescue can also be used during the consolidation
part of the therapeutic regime after high-dose chemo-
therapy kills the cells within the bone marrow [20].
There are multiple therapeutics currently undergoing

preclinical development or in clinical trials for NB.
These therapeutics include cytotoxic agents such as
topoisomerase 1 inhibitors, radionuclides, retinoids,
angiogenesis inhibitors, and tyrosine kinase inhibitors
[21–26]. Recently, immunotherapy has emerged as a
promising therapy to improve outcomes in patients with
advanced stage NB, specifically targeting the highly
expressed disialoganglioside GD2. Currently, monoclonal
antibodies for GD2 have been clinically approved for
therapy in combination with GM-CSF, IL-2, and 13-cis-
retinoic acid, while other forms of immunotherapy (e.g.
T-cell) are still under development [27–29]. Despite the
emergence of novel therapeutics including immunother-
apeutics, the prognosis for high-risk patients remains
poor.
NB is a heterogeneous cancer, with few distinct sub-

types and many different clinical presentations [30]. De-
velopment of effective therapeutics is dependent on
understanding tumor heterogeneity and the ability to ac-
curately test therapies in a preclinical setting. Preclinical
models typically use developed environments (murine or
in vitro) to assess how a tumor will respond to therapeu-
tics. The high degree of heterogeneity, lack of consistent
genetic markers, and range of prognosis (dependent on
stage) makes generating accurate preclinical models dif-
ficult. This review highlights current strategies and chal-
lenges of in vitro and in vivo NB modeling for
preclinical therapeutic testing.

Main text
Preclinical murine models
Murine models are frequently used for preclinical testing
of therapeutics due to their genetic homology to humans
(~ 80%), ability to be genetically manipulated to mimic
human diseases, and complex multicomponent environ-
ment (e.g stroma, immune cells) [31]. They are advanta-
geous as they provide information regarding therapeutic
efficacy that cannot be demonstrated in traditional, less
complex in vitro cultures. Murine models are typically a
necessary stage before progressing therapies to clinical
trials. There are many different types of murine models,
including genetically engineered models, spontaneously

formed tumors, mice with implanted mouse or human
tumors, and, more recently, mixed cell type xenograft
models. Each of these models is uniquely suited for pre-
clinical testing of therapeutics. However, there is the still
need for further improvement and refinement to drive
the development of successful therapeutics.

Transgenic mouse models
Transgenic mice, also referred to as genetically engi-
neered mouse models (GEMMs), can be engineered
through promotion or addition of genes (knock-in) or
inhibition of gene expression (knock-out). Methods of
GEMM development have been reviewed elsewhere [32,
33]. Table 1 contains a list of currently used GEMMs for
NB. The most widely used GEMM researched for NB is
the TH-MYCN model developed by Weiss et al. [34].
These mice overexpress MYCN through a tyrosine hy-
droxylase promoter. This model was the first to demon-
strate that MYCN amplification can drive NB
development, identifying the MYCN pathway as a poten-
tial therapeutic target. Tumors generated from MYCN
overexpressing mice have MYCN protein levels similar
to that of the established NB KELLY cell line, known to
contain amplified MYCN [34]. Additionally, similar
histopathology is observed between MYCN-amplified
patient tumor samples and TH-MYCN tumors [35]. This
model has been used extensively in preclinical testing
for small molecule inhibitors and testing of chemothera-
peutics [35–41]. MYCN pathway inhibitors that showed
success in vitro in MYCN-amplified cell lines, such as
bromodomain and extra-terminal domain protein inhibi-
tors and cyclin-dependent kinase inhibitors, demon-
strated similar results in the TH-MYCN model [37, 42,
43]. High MYCN expression has been linked to high
levels of angiogenesis. TH-MYCN tumors treated with
angiogenic inhibitors, such as the angiogenesis inhibitor
TNP-470, demonstrated a high level of response. In
treated tumors, intact blood vessels were replaced with
hemorrhagic areas containing necrosis and apoptosis
[35]. This model has also been used, although to a lim-
ited extent, for testing immune checkpoint inhibitors
[44]. While the TH-MYCN model has been considered
the standard for preclinical modeling of MYCN-
amplified tumors, there are still limitations. There is a
high rate of tumor incidence in the 129/SvJ background
(100% for homozygous mice and 33% for heterozygous
mice). However, there is a considerably low rate of
tumor incidence in alternative background strains such
as BL6 (5% incidence), making crossing with established
BL6 GEMMs a challenge [34]. Additionally, distant me-
tastasis frequently occur in the clinical presentation of
MYCN-amplified tumors, but are rarely observed in the
TH-MYCN model [52]. This model is also limited by
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the long development time (an average of 65 days), mak-
ing it difficult for rapid, high-throughput testing [52, 53].
To address some of the limitations of the TH-MYCN

model, a mouse with Cre inducible MYCN expression
(LSL-MYCN;Dbh-iCre) was created [53]. This model has
a better-defined transgene insertion site allowing tumors
to develop at multiple locations in the neural crest, such
as the adrenals, the celiac ganglia, and the superior cer-
vical ganglia. Additionally, this model allows for tumor
development in multiple mouse strain backgrounds,
which is important when combining the TH-MYCN
mouse with other cancer relevant alleles [53]. LSL-
MYCN;Dbh-iCre mice recapitulates NB histology and
molecular expression patterns [53]. These mice are ad-
vantageous compared to TH-MYCN mice as the trans-
gene insertion is localized to the commonly used
ROSA26 locus, which, when discontinued, causes no
phenotypic change in mice. Alternatively, the TH-
MYCN mouse primarily inserts into the distal region of
chromosome 18, the effects of which have not fully
been characterized. While the insertion site has been
changed, MYCN expression increased to comparable
levels as the TH-MYCN model. Cell lines derived
from the LSL-MYCN;Dbh-iCre mouse also respond to
the MYCN targeting drugs MLN8327 and JQ1 [53].
This model presents a more defined MYCN-amplified
tumor model for preclinical testing, and could prove
useful for future testing of therapies aimed at treating
high risk MYCN-amplified NB.
In addition to the LSL-MYCN;Dbh-iCre mouse, the

TH-MYCN mouse has been genetically modified to in-
corporate other oncogenes. A cross of a TH-Cre
caspase-8 knockout mouse with a TH-MYCN mouse ex-
hibited increased bone marrow metastasis as compared
to the TH-MYCN mouse (37% versus 5% incidence)
[45]. Loss of caspase-8 does not change the incidence of
primary tumors, however, it does change the extracellu-
lar matrix (ECM) structure of the primary tumor into a

more migratory phenotype with increased collagen 4A2
and laminin α4 as well as increased EMT genes (Snai2,
Twist1 and TfpI2). The metastatic propensity of this
model could be useful for identifying treatments for
metastatic NB. In addition, similar to clinical treatment
strategies, the primary tumors in the mice could be
debulked and allowed to metastasize. This could allow
this model to be used to gain knowledge about the
metastatic population and identify therapeutic ap-
proaches specifically geared towards those tumors [45].
To mimic the impaired p53 function frequently

present in high-risk NB recurrence, a TH-MYCN/
Trp53(KI/KI) mouse with a tamoxifen inducible p53ER
fusion protein was created [46]. Survival in TH-MYCN/
Trp53(KI/KI) mice reduced, and the tumors exhibited
decreased radiosensitivity [46]. In addition, when func-
tional p53 was restored to these mice, only 50% regained
sensitivity to radiation, suggesting other resistance
mechanisms. Additionally, the authors determined that
the upregulation of the glutathione S-transferase path-
way observed in this model was correlated with poor
survival in NB patients [46]. TH-MYCN/Trp53(KI/KI)
allografted tumors treated with the glutathione S-
transferase pathway inhibitor buthionine sulfoximine
regained sensitivity to radiation, suggesting a potential
therapeutic strategy for patients with MYCN amplifica-
tion and impaired p53 function [46].
Other mutations have been examined as a method of

inducing NB, such as activation of anaplastic lymphoma
kinase mutations (ALK), present in approximately 10%
of NB [54]. One model used targeted expression of the
most common and aggressive ALK mutation ALKF1174.
This model exhibited a similar phenotype to NB and
syntenic changes similar to those present in clinical NB
including 17q gain and MYCN amplification [47]. Pre-
clinically, this model has been used to evaluate drug re-
sponse to ALK inhibitors and may provide useful insight
into treatments for ALK mutated NB. To provide a

Table 1 Table of preclinical genetically engineering murine models

Mouse Model Advantages Limitations References

TH-MYCN Representative of high-risk NB, high rate of tumor incidence Long time for tumor development, few metastasis,
limited background strain

[34–43]

LSL-MYCN;
Dbh-iCre

Better defined transgene insertion then TH-MYCN, high rate of inci-
dence in multiple background strains

Few metastasis, Limited work with preclinical
therapeutic testing

[44]

TH-MYCN/
CASP8(KO)

Metastasis, high rate of tumor incidence Altered ECM structure of primary tumor [45]

TH-MYCN/
Trp53(KI)

Inducible p53 loss p53 mutation more frequently present in
recurrences, survival in mice greatly reduced

[46]

ALK (F1174) Consistent with NB phenotype Only present in 10% of NB [47, 48]

TH-MYCN/
ALK(F1174)

High tumor incidence, faster tumor growth Relevance is limited to < 10% patients [48]

SV40 Tag Consistent with NB phenotype, high tumor incidence rate,
metastasis

All mice die by 28 weeks of age [49–51]
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model comparable to patient tumors that exhibit both
MYCN amplification and ALK mutations, the ALKF1174

mutation model was crossed with TH-MYCN mice [48].
Mice hemizygotic for both ALKF1174L and MYCN ampli-
fication exhibited high tumor penetrance with rapid le-
thality superior to that observed in MYCN hemizygotes
allowing for elucidating the interplay between the ALK
and MYCN pathways [55].
Finally, a transgenic mouse line carrying tetracycline

inducible simian virus 40 T-antigen (SV40 Tag) has been
created using tetracycline responsive elements with a
cytomegalovirus promoter and SV40 Tag [49]. These
mice die by 28 weeks of age and exhibit bilateral adrenal
tumors. When compared to both human adrenal NB
and pheochromocytoma, higher similarity to human NB
tumors was observed compared to the pheochromocy-
toma. NB-associated genetic changes were present with
upregulation of MYCN, paired-like homeobox 2b,
gamma-aminobutyric acid A receptor beta3 subunit, islet
1, and kinesin family member 1A [49, 50]. In addition,
when this model was linked to the olfactory marker pro-
tein promoter region, it generated a line of mice with
highly metastatic tumors originating in the adrenals or
sympathetic ganglia. These metastatic tumors were mor-
phologically very similar to clinical NB histologically
[51]. While limited preclinical therapeutic testing has
been performed with these models, it has the potential
to be a promising model for therapeutic testing due to
its genetic similarity to NB and ability to mimic
metastasis.
GEMMs are advantageous as they utilize mouse ho-

mologs of tumorigenic mutations present in patient tu-
mors to mirror clinical tumors. The mouse retains an
intact immune system and stroma, allowing for evalu-
ation of therapeutics that target both the tumor and the
surrounding microenvironment. They have specific
pathway activations, allowing for analysis and targeted
therapeutic testing [42, 48, 56]. The genetic changes are
constitutively active in mice throughout development or
can be induced at a specific developmental stage. This is
important as neuroblastoma arises from developing cells
in pediatric patients. In addition, transgenic mice with
different allele modifications can be crossed in order to
study crosstalk between oncogenic pathways [48]. While
GEMMs are useful in understanding tumorigenesis and
developing therapeutics, there are some drawbacks to
these models. They are time consuming and difficult to
generate, and while murine pathways share some hom-
ology to human pathways, are not a perfect match to
humans [31]. Further, a large number of therapies still
exhibit a differential response between murine and clin-
ical models [57]. This may be partially due to a lack of
control over the modification (e.g. achieving full knock-
out) of targeted oncogenes. While more advanced

methods such as the CRISPR system have been
employed for other cancers and for NB cell lines
in vitro, they have yet to be reported on for NB mouse
models. In addition, a fundamental problem with many
GEMMs is that mutations are frequently not localized to
pathological cells and can impact other cells within the
mouse [34].

Syngeneic mouse models
Syngeneic mouse models, also known as allograft tumor
models, utilize tumor cells derived from a mouse of the
same genetic mouse strain. Tumor cells can be removed
from GEMMs, used to develop cell lines in vitro, then
reintroduced into mice of the same strain [58–61].
Tumorigenic cells capable of cell line derivation have
been identified in TH-MYCN mice as early as day E13.5
[61]. TH-MYCN tumors from both homozygous and
hemizygous mice have been used to develop syngeneic
tumors. Whether the mouse was homozygous or hemi-
zygous impacted the cell phenotype and allowed for the
creation of different tumor lines. Hemizygous tumors
gave rise to cell lines which were phenotypically similar
to an N-type NB, expressing high levels of MYCN.
Homozygous tumors gave rise to cell lines phenotypic-
ally comparable those of hemizygous tumors (N-type
high MYCN) and to S-type, adherent NB cells, that ex-
hibited reduced MYCN expression [60]. Interestingly,
the cell lines derived from hemizygous tumors also dis-
played reduced tumorigenicity in a syngeneic model,
compared to that of the original tumor phenotype. Fur-
ther, these cell lines contained many genetic changes
present in clinical NB, allowing for syngeneic mice to
better represent clinical NB. For example, mouse
chromosome homologous to human chromosomes 7
and 12 were gained in one cell line, which has been ob-
served in a subset of clinical cases. Gains homologous to
chromosomes 1q and 18q were frequently observed in
TH-MYCN derived cell lines, further suggesting that
molecular and biological features of NB are present in
derived murine cell lines [60]. These murine tumor cells
can be transplanted into mice of the background strain,
leaving an intact matched immune system and stroma
[58–60].
TH-MYCN-derived lines have been transplanted into

mice both subcutaneously and orthotopically [58–60].
Injection of tumor lines derived from TH-MYCN tu-
mors in a C57Bl/6 background into C57Bl/6 mice has
been used for preclinical testing of immunotherapies
[58]. Kroesen et al. demonstrated the relevance of this
model for immunotherapy testing due to the tumors ex-
pressing similar surface marker profiles (low HLA mole-
cules and the presence of NKG2D activating ligand
Rae1), and containing similar resident immune popula-
tions [58]. In addition to TH-MYCN-derived tumors,
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other tumors derived from murine cell lines, such as
neuro-2a (spontaneous NB from strain A albino mice,
C1300 derived), TBJ (C1300, a strain A/J spontaneous
tumor), 9464D (TH-MYCN on a C57Bl/6) and NXS2
(created from C1300 tumors) have been engrafted both
subcutaneously and orthotopically for testing of immu-
notherapeutics [62–64]. In particular, preclinical testing
of GD2-targeting immunotherapeutics, both individually
and in combination with IL-2, and examining the impact
on other immune components has been performed using
these models [58, 59, 64–66].
Syngeneic transplantations of murine cells are advan-

tageous as tumorous cells can be engrafted in mice with
a non-genetically modified matching immune system
and stroma [58, 59]. Unlike transgenic mouse models,
the genetic mutations are confined to the transplanted
tumor cells. In addition, there are typically an abundance
of cells for transplantation, which allows for large scale
therapeutic testing [58]. Further genetic modification of
cells in vitro can also be performed to either add tumor
relevant pathway modifications or to add markers to
improve cell visualization such as fluorescent or lucif-
erase labels [63, 67, 68]. Potential modifications to
cells will be discussed further in the in vitro model’s
section. Disadvantages of syngeneic models include
inconsistency in tumor engraftment and the use of
the murine system. Similar to GEMMs, engrafted tu-
mors are frequently based on a single oncogenic
based mutation as compared to the heterogeneity ex-
hibited in clinical tumors [52].

Xenograft models
Human cells have been engrafted into mice for preclin-
ical testing and understanding mechanisms of NB devel-
opment. Xenograft models can be generated via

subcutaneous or orthotopic injection of human NB cells.
Tumors developed in these studies are advantageous
compared to those developed in GEMMs or in syngeneic
models as they more closely mimic a primary human
tumor and are better predictors of clinical outcomes
[52]. A table of different human cell lines commonly
xenografted into mice can be found in Table 2. Use of
cell lines with different genetic profiles allows for the
formation of tumors with different phenotypes and
growth rates [52, 69]. Additionally, these tumors mimic
some of the heterogeneity observed in patient tumors
[52]. They are typically easier to generate than tumors
generated using primary patient-derived cells, and allow
for large scale studies, as cell lines can be scaled up
in vitro before engraftment. However, they require the
use of immunocompromised mice (typically lacking T-
cells) for engraftment and survival, which provides a less
realistic tumor microenvironment and limits the conclu-
sions that can be made when testing immunotherapies.
Both orthotopic and subcutaneous tumors have been
used extensively for preclinical testing of therapeutics.
Therapeutic testing has extended to chemotherapy,
radiotherapy, small interfering RNA, antisense oligonu-
cleotides and pathway inhibitors as well as drug delivery
methods such as nanoparticles and drug-loaded scaffolds
or films [56, 69, 102–108]. In addition to subcutaneous
and orthotopic injection, Seong et al. used intracardiac
injection xenograft models to identify NB sub-
populations with a higher metastatic potential. Meta-
static populations and phenotype differences correlated
with genetic changes representing utility for these meta-
static cells in identifying new therapeutic targets [109].
Borriello et al. evaluated the impact of the heteroge-

neous microenvironment. NB cell lines with and without
bone marrow-derived mesenchymal stromal cells (BM-

Table 2 Frequently used human NB cells lines for preclinical testing

Cell Line MYCN Status ALK Mutation P53 mutation Preclinical Testing References

KELLY Amplified WT WT [69–75]

CHP-212 Amplified WT WT [76, 77]

SKNAS Non-Amplified WT H168R [76, 78–86]

SH-SY-5Y Non-Amplified F1174 L WT [70, 71, 75, 78, 87–89]

IMR-32 Amplified WT WT [80, 88, 90, 91]

IMR-05 Amplified WT WT [37, 86, 89, 92]

LA-N-5 Amplified R1275Q WT [71, 93, 94]

NB-1 Amplified WT; Amplified WT [95, 96]

SK-N-BE(2) Amplified WT C135F [75, 78, 83, 89, 86, 97]

SK-N-BE(2)-C Amplified WT C135F [78]

CHP-134 Amplified WT WT [78, 89, 98, 99]

SK-N-DZ Amplified WT R110L [82, 84, 85]

NB-1691 Amplified WT WT [83, 100, 101]
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MSCs) and cancer-associated fibroblasts (CAFs) taken
from NB patients were injected subcutaneously and just
below the renal capsule [110]. Engrafted tumors were
treated with the chemotherapeutics etoposide, etoposide
with ruxolitinib (JAK2/STAT3 inhibitor), and trametinib
MEK/ERK1/2 (inhibitor). These inhibitors were chosen
as CAFs and BM-MSCs have activated STAT3 and
ERK1/2 pathways, which contributes to drug resistance.
No difference in response to etoposide between NB cells
and NB cells with BM-MSCs and CAFs was observed.
However, response to etoposide by NB cells and NB cells
with BM-MSCs and CAFs was enhanced when com-
bined with ruxolitinib and trametinib. In the NB cell
alone tumors, murine CAFs were identified within the
tumor, potentially explaining the similarity in response.
While cell lines injected into mice are typically pas-

saged in vitro, many studies have shown that traditional
in vitro culture methods significantly impact the cell
genotype and phenotype. This may be due to the cells
adapting to the tissue culture environment and the lack
of in vivo relevant signaling. Instead, cells in tissue cul-
ture rely on culture medium, with potential adverse ef-
fects, specifically related to fetal bovine serum. Fetal
bovine serum is frequently used as a source of hormone
factors, essential nutrients, and growth factors needed
for a stable growth environment [111]. However, growth
with serum has been demonstrated to lead to cellular
differentiation and genetic changes, causing the cells to
stop mimicking their original clinical phenotype and in-
crease their drug sensitivity [112, 113].
Since NB is an orphan disease, a limited number of

patient-derived tumor specimens are available. Patient-
derived xenografts (PDX) are typically taken directly
from patients and passaged by subcutaneous or orthoto-
pic implantation of primary tumor pieces or injecting
tumor cells into mice. A list of current PDX tumor cells
and suppliers can be found in Table 3. Passaging the
tumor as a xenograft eliminates in vitro adaptations
often observed with sub-cultured cell lines [114, 115].
Braekeveldt et al. and Stewart et al. demonstrated that
PDX tumor cells orthotopically grown shared molecular
characteristics with primary NB cells, retained classic
NB markers, and spontaneously metastasized in murine
models [114, 115]. Increased infiltration and distant me-
tastasis were observed with orthotopically injected PDX
cells as compared to orthotopically injected cell lines. In
addition, hallmarks of the microenvironment such as
vascular infiltration, CAFs, and tumor-associated macro-
phages (TAMs) with an M2 phenotype were observed in
orthotopic PDX tumors [116]. Continuous xenograft
transplantation has also been used to identify genetic
changes that tumors undergo during metastasis [117].
Regarding patient-derived tumor cells propagated
in vitro, generating non-adherent cell lines by culturing

with basic fibroblast growth factor, epidermal growth
factor, and B27 without serum more closely mimics pri-
mary cell lines both in vitro and in vivo [118].
PDX models have been used to evaluate standard of

care chemotherapeutics and targeted therapeutics [115].
While PDX tumors are the gold standard for xenograft
models, there are still many limitations. The time to es-
tablish tumors is long and generating enough consist-
ently sized tumors for large scale therapeutic studies is
difficult. In addition, PDX cells are injected into im-
munocompromised mice, limiting their effectiveness for
testing of immunotherapies [119]. In vivo, PDX cells rely
on the mouse microenvironment, which does not com-
pletely mimic that of a human and confounds potential
stromal interactions [116].

Xenografted tumors in “humanized” mice
A major limitation of xenograft models is the use of im-
munocompromised mice that lack a fully functional im-
mune system. As more immunotherapies are being
developed, identification of preclinical models for testing
them is critical. Recently, immunodeficient mice with
humanized immune systems have emerged as a
method to examine xenografted tumor growth with
an engrafted human immune system. These human-
ized mice (HM) are developed to investigate the in-
teractions between tumor cells and immune cells.
There are several methods of developing HM, the
most basic of which consists of direct injection of hu-
man peripheral blood into immunocompromised mice
[116]. Alternatively, stromal tissue can be injected
alongside tumor tissue, resulting in an active immune
population [120]. More commonly, human
hematopoietic stem cells and/or precursor cells
(CD34+ or CD133+) are injected into the bone mar-
row of irradiated immunocompromised mice, allowing
for the generation of immune cells including T cells,
B cells, and macrophages [121]. This method is ad-
vantageous as a patient’s own marrow or blood could
be injected into the mouse, allowing for matching be-
tween the immune system and tumor. However, suc-
cessful use of this method has not been reported yet
for NB. While the method of hematopoietic stem cell
injection is extremely promising, there are still many
components that need to be developed. These models
still retain mouse stroma and cytokines, which has
the potential to prevent complete immune cell differ-
entiation including T cells and B cells [121]. Further-
more, these models have been shown to exhibit
antigen-specific immune responses [122, 123]. The
development of accurate humanized mice represents
the future for effective pre-clinical therapeutic
development.
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Table 3 Available NB PDX Cell Lines and Sources

PDX Line Stage of Tumor Age of Patient (Yr.M) MCYN Status p53 Status Organization

NB-SD 4 1 Amp Mut Pediatric Preclinical Testing Program

NB-1771 4 2.1 Amp Mut

NB-1691 4 1.9 Amp WT

NB-EBc1 4 2.6 Non Amp WT

CHLA-79 4 2 Non Amp WT

NB-1643 4 1.7 Amp WT

NB-1382 3 3.5 Amp N/A

IGR-NB8 3 5.0 Amp N/A Insitut Curie

IGR-N835 4 2.0 Amp N/A

MAP-IC-A23-NB-1 L2 2.6 Non Amp N/A

MAP-GR-B25-NB-1 4 4.0 Amp N/A

MAP-GR-A99-NB-1 4 1.10 Amp N/A

HSJD-NB-011 4 2.6 Amp N/A

SJNBL012407_X1 4 0.1 Amp N/A Children’s Solid Tumor Network

SJNBL013761_X1 4 3.0 Non Amp N/A

SJNBL013762_X1 4 1.3 Amp N/A

SJNBL013763_X1 2B 2.0 Amp N/A

SJNBL015724_X1 4 2.0 Non Amp N/A

SJNBL046_X 4 2.0 Amp N/A

SJNBL108_X 4 3.0 Non Amp N/A

SJNBL046145_X1 4 2.0 Non Amp N/A

SJNBL046148_X1 4 1.11 Amp N/A

SJNBL047443_X1 4 12.0 Non Amp N/A

PDX-1 4 1.4 Amp N/A Lund University

PDX-2 4 2.2 Amp N/A

PDX-3 3 2.9 Amp N/A

PDX-4 4 4.9 Amp N/A

PDX-5 4 2.4 Non Amp N/A

PDX-6 2B 12.0 Amp N/A

COG-N-415x Unknown Unknown Amp WT Children’s Oncology Group

COG-N-440x Unknown Unknown Amp WT

COG-N-453x Unknown Unknown Amp WT

COG-N-471x Unknown Unknown Amp WT

COG-N-496x Unknown Unknown Amp N/A

COG-N-519x Unknown Unknown Amp N/A

COG-N-534m Unknown Unknown Non Amp N/A

COG-N-549x Unknown Unknown Non Amp N/A

COG-N-557x Unknown Unknown Amp N/A

COG-N-573x Unknown Unknown Amp N/A

Felix (COG-N-426) Unknown Unknown Non Amp N/A

CHLA-90 4 8 Non Amp N/A

CHLA-136 4 3 Amp N/A

Amp Amplified, Mut Mutation, WT Wild-type, N/A Not Available
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Preclinical in vitro models
While murine-based systems are the primary method for
preclinical testing, advances in tissue culture techniques
and in vitro systems are promising for creating accurate
NB models. Furthermore, the high cost of murine
models as well as cross species pathways and micro-
environment differences makes accurate, high-
throughput screening challenging. In vitro models en-
compass a wide range of systems, including traditional
adherent monolayer cells, cells grown in 3D suspension
cultures (spheroids), and more complex tissue engineer-
ing approaches. In addition, they allow for testing of cell
response or cell-cell communication in a more con-
trolled manner (e.g. control of cell confluence, ratio of
different cell types). While in vitro systems are already
used for screening of therapeutics prior to in vivo stud-
ies, advances in tissue engineering approaches are creat-
ing more accurate models that may better predict
clinical efficacy.

Monolayer in vitro systems
Traditional in vitro models consist of commercially
available or lab-derived cell lines adherent to polystyrene
dishes, typically grown in the presence of fetal bovine
serum, nutrients, and antibiotics. Monolayer culturing is
the most common method of evaluating therapeutic effi-
cacy, primarily due to the higher number of cells that
can be generated, which allows for rapid screening of
many compounds. In addition, these cells can be modi-
fied at the genetic level to evaluate the impact of path-
way changes on therapeutic efficacy. Methods of
inducing gene changes, including transfection, transduc-
tion, and more recently using CRISPR systems, have
been previously reviewed [124–126]. Genes that have
been identified as potential mediators in NB pathways
can then be evaluated through knockdown, overexpres-
sion, or direct targeting using pathway inhibitors.
MYCN-amplified cell lines have been useful in identi-

fying many proteins and genes that either contribute to
or are associated with MYCN. Park et al. determined
that high expression of protein arginine methyltransfer-
ase 5 (PRMT5) was strongly associated with MYCN
amplification. Use of short-interfering RNA to reduce
expression of PRMT5 decreased MYCN expression and
caused cell death in MYCN-amplified cell lines [127].
Ambrosio et al. identified lysine-specific demethylase 1
(LSD1), a histone modifier, as a transcriptional modula-
tor of NDRG1 (N-Myc Downstream-Regulated Gene 1,
a metastasis suppressor). In both in vitro models and pa-
tient samples, high levels of LSD1 correlated with low
levels of NDRG1 [128].
RNAi and CRISPR screens have been useful in identi-

fying genes that could be targets for therapeutic regimes.
In a kinome-wide RNAi screen, Shen et al. targeted

protein kinases and kinase associated genes to identify
sensitizing and inhibitory kinases to HDAC8 inhibitors.
Knockdown of ALK sensitized NB cells to HDAC8 in-
hibitors. This was further confirmed through combina-
torial treatment of NB tumors with crizotinib, an ALK
inhibitor, and HDAC8 inhibitors resulting in increased
cell death [129]. CRISPR-Cas9 screening of MYCN-
amplified NB cells by Chen et al. demonstrated cellular
dependency on the PRCR2 complex, specifically EZH2.
MYCN binds at the EZH2 promoter, repressing neur-
onal differential of NB cells, which promotes a more
tumorigenic phenotype. This was further confirmed
through genetic and pharmacological suppression of
EZH2, which inhibited NB growth. These screens are
useful in identifying key pathways that could be thera-
peutically targeted in NB [130].
In addition to screening through genetic modifications,

screens of high numbers of cell lines and therapies can
be conducted in vitro. Mahoney et al. screened 482 cell
lines with metabolic inhibitors [131]. Neuroendocrine
cells, specifically NB cells, showed a higher sensitivity to
NB-598, an inhibitor of enzyme squalene epoxidase
(SQLE). This suggests that targeting this pathway may
have therapeutic potential. Similarly, Michaelis et al.
screened 321 cancer cell lines (from 26 different types of
cancer) for response to flubendazole (inhibitor of micro-
tubule function) [132]. NB was identified as highly sensi-
tive to flubendazole, reducing viability of 140 NB cell
lines. Large scale screens have the potential to identify
novel therapeutics for NB.

Monolayer co-culture models
The NB tumor microenvironment is composed of mul-
tiple cell types including vascular cells, tumor-associated
macrophages, fibroblasts, T-cells, natural killer (NK)
cells, and others [133]. Each cell type has the potential
to influence NB phenotype based on cell-cell interac-
tions, paracrine signaling and secreted factors. Hashi-
moto et al. co-cultured NB cells with two prominent
microenvironment cells, fibroblasts and macrophages.
Consistent with clinical results that correlated areas of
fibroblasts with aggressive NB phenotype, co-culturing
with fibroblasts increased NB cell proliferation [133]. In
addition, peripheral blood macrophages were co-
cultured with NB cells directly and indirectly using the
NB cell-conditioned medium NB cell-conditioned
medium transitioned the macrophages into a pro-tumor
survival M2 phenotype, or TAM phenotype, suggesting a
crosstalk between NB cells and macrophages supporting
tumor progression. Indirect co-culture of NB cells in
macrophage medium increased tumor invasiveness
(through a Matrigel based invasion assay) likely through
CXCL2 secretion [133]. Direct co-culture of NB cells
and macrophages did not result in an increase in NB
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proliferation; however, it did enhance the invasiveness of
NB cells. In co-culture with NB cells, both macrophage
and fibroblasts exhibited enhanced invasion.
Borriello et al. co-cultured NB cells with fibroblasts

derived from MSC cells. They observed that fibroblasts
induced a pro-tumorigenic effect on NB cells, including
increased proliferation and inhibited apoptosis [110].
Chemoresistance to etoposide and melphalan was evalu-
ated using chemosensitive and chemoresistant NB cell
lines co-cultured with fibroblasts. It was determined that
co-culturing significantly reduced responsiveness of both
the NB cell lines and the fibroblasts to chemotherapy.
This suggests that presence of fibroblasts in the tumor
bed may contribute to chemoresistance. The authors
also determined that these effects do not require cell-to-
cell contact but are likely due to soluble factors, many of
which have convergent activity in the STAT3 and ERK
1/2 signaling pathways [110].
To evaluate the effect of ECM components on self-

organization in co-cultures, Rizvanov et al. co-cultured
NB cells MSCs on different surfaces including poly-l-
lysine, fibronectin, gelatin, collagen I, and Matrigel to
examine the surface effect on cell phenotype [134]. No
phenotypic differences were observed between non-
coated surfaces and surfaces coated with poly-l-lysine, fi-
bronectin, gelatin, or collagen I. In these culture condi-
tions, cells organized into distinct patterns with channels
of MSCs and islands of NB cells, comparable to a tumor.
However, when cultured on Matrigel, MSCs organized
themselves into a dense core with a surrounding ring of
NB cells. The authors suggested that this phenotype was
more representative of metastatic tumors and could be
used as a potential model for metastasis. In addition, ex-
posure of this co-culture model to oxidative stress
through the addition of hydrogen peroxide demon-
strated that the presence of MSCs increased NB cell via-
bility [134]. As oxidative stress is one of the primary
death mechanisms of radiation therapy, this finding im-
plies that this culture system is more mimetic of an
in vivo resistant tumor [134].
Co-culturing of NB and NK cells is frequently used as

part of an antibody-dependent cell-mediated cytotoxicity
assay for testing of immunotherapies. The NK cells in-
duce lysis of NB cells in the presence of antibodies
[135]. Similar studies have been carried out to test thera-
peutic efficacy with leukocytes, peripheral blood mono-
nuclear cells, and granulocytes [136, 137]. These systems
have been used to test out combination therapies of cy-
tokines or retinoids with immunotherapies [138, 139].
However, there has been little work done with longer-
term culture of these immune cell populations and
characterization of the impact of co-culture on tumor
cells and immune cells. As immune cells are present in
NB tumors, further development of these co-culture

models may be critical to developing better therapeutic
strategies.
NB cells have also been cultured with hepatocytes, as

NB frequently metastasizes to the liver [140, 141]. The
authors observed resistance to apoptosis by the NB cells,
induction of apoptosis in the hepatocytes, and an in-
crease in VEGF secretion. The hepatocytes induced
overexpress of Bcl-2 by the NB cells, thereby reducing
NB apoptosis and establishing Bcl-2 as a therapeutic tar-
get for NB liver metastasis. Interestingly, studies focus-
ing on VEGF secretion demonstrated that expression of
VEGF receptors is highly heterogeneous across NB lines,
which likely extends to patient tumors [140]. It is there-
fore critical to examine the expression of each individual
tumor when investigating the use of anti-VEGF therapies
[140, 141].
Co-culture systems also enable the investigation of cell

migration in the presence of other cell types, as com-
monly evaluated using transwell plates. NB cells in
transwell systems have been used to examine the impact
of NB cell MYCN-amplification level on migration of
human umbilical vein endothelial cells (HUVECs).
HUVEC migration was proportionate to MYCN-
amplification level. In addition, it was demonstrated that
the efficacy of a PI3K inhibitor NVP-BEZ235 (as angio-
genesis is regulated by PI3K) was dependent on MYCN.
This suggests a link between angiogenesis, the PI3K
pathway, and MYCN in NB [142]. Additional studies
have demonstrated that growth of HUVEC in medium
conditioned by NB cells induced vessel angiogenesis and
upregulation of VEGF and IL-8 [143].
Co-culturing NB cells with other cell types present

within the tumor microenvironment such as fibroblasts,
immune cells, and cells present at metastatic sites allows
for understanding of the impact of tumor microenviron-
ment on NB phenotype [133]. These culture systems
allow for an increase in understanding of tumor hetero-
geneity as well as critical tumor signaling pathways. For
preclinical therapeutic testing, co-culture systems pro-
vide an opportunity to better understand tumor escape
as mediated by signaling factors secreted from neighbor-
ing cells and how therapies influence non-tumor cells.
Incorporating additional microenvironment stress com-
ponents, including hypoxia and mechanics, would add
additional complexity and relevance for drug
development.

3D in vitro models: spheroid
Growth of NB cells in spheroids has been used as a pre-
clinical model, as spheroids have been suggested to more
accurately mimic the clinical phenotype as a drug
screening model [114, 116, 118]. NB spheroid cultures
can be generated using low or non-attachment culture
dishes, coated plates or dishes, or the removal of serum
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from the medium [144–147]. Compared to cells grown
in monolayer culture, spheroid cultures exhibited in-
creased expression of metabolic markers, cell stress re-
sponse proteins, cell structure proteins, and transport
polypeptides [148]. Sidarovich et al. used spheroids for
high throughput drug screening of over 300 FDA-
approved anti-cancer compounds or compounds under-
going clinical trials [149]. From this screen, the authors
identified, and later evaluate in vivo, two compounds,
ponatinib and axitinib, as potential new therapies for NB
based on toxicity, molecular target, and side effects
[149].
Spheroids are advantageous as once they reached a

critical size of > 100 μm, they begin to exhibit micro-
environment changes due to nutrient and oxygen gradi-
ents [146]. Changes in nutrient and oxygen gradients
induce therapeutic resistance through upregulation of
pro-survival and tumor promoting pathways [146].
Growth of NB cell lines and patient-derived tumor cells
as non-adherent spheroids demonstrated retention of
cellular phenotype more closely resembling primary tu-
mors [118]. Additional advantages of spheroids include
altered diffusion and ECM deposition that has the po-
tential to impact therapeutic efficacy [144].
Culturing as spheroids demonstrated selectively for

tumor-initiating cells [150]. Coulon et al. evaluated
spheroid formation of serially passaged PDXs and found
that only the bone marrow-derived metastatic cells (the
patient equivalent of stage 4) were able to generate
spheroids. The generation of spheroids suggests that the
metastatic cells have a high degree of self-renewal and
are likely enriched with a cancer stem cell population
[151]. This finding is important as it supports the use of
spheroids for testing drugs that are associated with
tumor stem cells such as Notch and WNT [152, 153].
MYCN-amplified tumor cells exhibit a higher propensity
for spheroid formation than non-MYCN-amplified cells
[151]. The ability to form spheroids is directly dependent
on the cellular differentiation status, or stemness. Treat-
ment with 13-cis-retinoic acid, a differentiation agent
that induces a neuronal phenotype, inhibited spheroid
formation [154].
Gransbury et al. fabricated spheroids of different diam-

eters (ranging from 50 to 800 μm) to evaluate different
microenvironments [146]. Using the spheroid culture,
the authors were able to examine different levels of hyp-
oxia, diffusion, and redox state, giving them further in-
sights into the therapeutic potential than otherwise
possible with 2D culture models [146]. Two different
cancer therapies were identified: NAMI-A and KP1019
which are RuIII-based anti-metastatic and cytotoxic
drugs that are administered in a non-active form and
subsequently become activated under oxidative environ-
ments. Cuperus et al. used spheroid cultures to study

fenretinide, which has been shown to induce apoptosis
through retinoic acid and reactive oxygen species
dependent pathways [155]. In combination with buthio-
nine sulfoximine, an inhibitor of glutathione synthesis,
fenretinide reduced proliferation and induced apoptosis
both in monolayer and in spheroids.
Spheroid culture systems have been used to model

drug diffusion challenges and develop drug delivery sys-
tems with improved tumor penetration. Sagnella et al.
used spheroid culture of NB to evaluate the therapeutic
potential of EDV™ nanocells – a bacterially-derived drug
delivery system consisting of nonviable cells that are ~
400 nm in diameter. The authors demonstrated that the
EGFR-targeted nanocells enhanced penetrance of doxo-
rubicin compared to non-targeted doxorubicin loaded
nanocells and doxorubicin without a delivery vehicle,
resulting in increased apoptosis. These findings were
confirmed in an orthotopic xenograft model [156].
Spheroids have been directly compared to monolayer

cells to determine efficacy of different forms of radio-
therapy [157]. Cunningham et al. demonstrated that the
Auger electron-emitting conjugates 123I-meta-iodoben-
zylguanidine and 125I- meta-iodobenzylguanidine and
the alpha-emitting conjugate 211At- astatobenzylguani-
dine were highly toxic to cells grown in monolayer and
in small spheroids. In larger spheroids, the Auger elec-
tron emitters were relatively ineffective. However, a
beta-emitting conjugate 131I-astatobenzylguanidine was
highly effective in large spheroids. This work highlighted
how spheroids may assist in identifying therapies that
may be more successful clinically, either for killing
macroscopic tumors [157]. Spheroids have also been
used to evaluate specific pathway inhibitors such as mul-
tikinase inhibitors and oxidative phosphorylation inhibi-
tors [158, 159].
Spheroid cultures are an important part of preclinical

testing. They are currently the most widely used ap-
proach to bridge the gap between two-dimensional cell
culture and the in vivo tumor microenvironment [147].
Growth in spheroids exhibits phenotypes better resem-
bling in vivo tumors [119]. In addition to a higher degree
of mimicry to in vivo tumors, spheroids are advanta-
geous as they allow for rapid preclinical testing [147].
They also exhibit cell-cell contact similar to that of an
in vivo tumor and exhibit similar diffusion limitations
for nutrients and therapeutics [114, 116, 118]. Limita-
tions to spheroid tumors include heterogeneity in sizes,
a necrotic core in large spheroids, and lack of additional
environmental components such the stroma and im-
mune cells [160, 161]. Non-uniform spheroid generation
results in varying diffusion gradients, making properly
controlled experiments challenging. Frequently tumors
in vivo exhibit a hypoxic core, with the necrotic cells se-
creting factors which induce angiogenesis, thus
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preventing the tumors from becoming overly necrotic.
Angiogenesis does not occur without a vascular compo-
nent in the spheroid cultures, so care must be taken to
avoid large regions of necrosis. Stroma and immune cells
are critical components of the tumor microenvironment
and can impact oncogenic pathways and therapeutic effi-
cacy. Co-culture with stroma and immune components
in spheroids has been demonstrated to be effective for
other cancer types, and presents a unique opportunity to
mimic NB the tumor microenvironment [162–165].

Hydrogels and scaffolds for 3D tumor growth
Limited work has been done with NB growth in 3D out-
side of spheroid cultures. However, 3D growth of NB
cells can be achieved using a broad range of scaffold and
or hydrogel materials. ECM hydrogels such as collagen I
and Matrigel have been used to mimic tumor ECM and
provide a backbone for 3D tumor growth. These 3D
matrices have the potential to impact gene expression
and cell morphology [166]. Li et al. used microarray ana-
lysis to demonstrate differences in gene expression in
cells grown in monolayer, collagen I hydrogels, and
Matrigel hydrogels [166]. All 3D culture conditions in-
duced morphological differences as compared to mono-
layer. Cells grown in collagen I exhibited longer neurites
than those grown in Matrigel, likely due to the fibrils
present in the collagen. This study focused on genes as-
sociated with morphology and neurite outgrowth; stud-
ies evaluating the impact on key NB tumor pathways
have not been performed.
Mitchell et al., used spheroids embedded in collagen

hydrogels to evaluate the invasive behavior of NB [167].
Mixed cell population of NB cells, neuronal type NB
cells and stromal type NB cells, exhibited a heteroge-
neous invasive population. Crosstalk between both cell
types was identified where neuronal type NB cells de-
creased invasion of stromal type NB cells and stromal
type NB cells enhanced invasion in neuronal types NB
cells [167]. This could be useful in identifying which cell
populations to target therapeutically to decrease
metastasis.
Studies have suggested the presence of ECM mole-

cules as well as growth in 3D can impact the responsive-
ness to therapeutics [168]. Mitchell et al., evaluated
siRNA-targeting Rac on both single cell suspensions and
cells suspended in 3D collagen hydrogels. Cell lines
with different morphologies, stromal, neuronal, or
combination, were evaluated. As Rac inhibition is
most effective in cells with elongated, invasive morph-
ology, studies in 3D were critical to identifying differ-
ences in invasion and morphology for determining
therapeutic efficacy [168].
Non-hydrogel-based scaffolds typically consist of por-

ous or fibrous materials (either synthetic or biological-

derived) that may mimic structures present in vivo. They
are advantageous as they have tunable degradation based
on material properties or material choice, can be func-
tionalized to mimic the native environment, and provide
control over spatial organization. Scaffolded approaches
have been used to model other cancer types, but limited
scaffolded approaches have been utilized for NB. Curtin
et al. used lyophilized collagen I/glycosaminoglycan and
collagen I/nanohydroxyapatite scaffolds for culturing of
KELLY NB cells and a cisplatin-resistant KELLY cell de-
rivative [169]. The NB cells exhibited reduced growth in
3D as compared to monolayer culturing, which is con-
sistent with previously demonstrated results in other
cancer cell lines [170, 171]. The cisplatin-resistant cell
line exhibited increased proliferation in the collagen/hy-
droxyapatite scaffold as compared to the collagen/gly-
cosaminoglycan scaffold. Response to cisplatin was
evaluated in monolayer, 3D culture, and an in an ortho-
topic xenograft model. Both 3D culture models exhibited
similar chemosensitivity to the orthotopic in vivo model,
with a reduced response observed as compared to the
monolayer culture. Using these scaffolds, KELLY NB
cells grown in 2D and 3D were used for evaluation of li-
posomes delivering miRNA for therapeutic gene silen-
cing [169]. Unlike the chemotherapy studies, miRNA
exhibited similar effects in 2D and 3D highlighting the
potential usefulness of miRNA as a therapeutic.
Scaffold based studies have also been used for bio-

mechanical modeling. One scaffold-based study used
graphene-augmented nanofiber scaffolds to determine
the impact of an “out-of-comfort” nanobiomechanical
environment for NB cells [172]. Growth on highly
aligned graphene fibers changed the morphology from
flat to a more rounded shape as the cells enveloped the
fibers. In addition, increased gene expression of pro-
migratory and pro-invasion markers were observed
[172]. This represents a potential system to examine the
more migratory or more metastatic NB cells, and de-
velop therapeutics aimed at effectively inhibiting those
cells.
3D scaffold-based modeling has been explored for

other pediatric blastoma and similar pediatric cancers.
For example, polymeric poly (lactide-co-glycolide) nano-
particles have been used to generate 3D cultures of ret-
inoblastoma cells. Etoposide and doxorubicin loaded
nanoparticles induced higher cytotoxicity towards 2D
cultured cells as compared to 3D cultured cells. The au-
thors correlated this to a decreased drug exposure in 3D
cultured cells as compared to 2D, likely due to diffusion
barriers [173]. Electrospun poly(ε-caprolactone) micro-
fiber scaffolds have been used to generate models of
Ewing sarcoma [174]. Using these models, cells grown in
microfiber scaffolds exhibited reduced proliferation as
compared to 2D cultured cells. Cell growth on the
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microfiber scaffold was comparable to xenograft growth,
as were levels of relevant pathways such as IGF-1R sig-
naling and mTor [174]. Ewing sarcoma cell lines and
PDX cells have been grown on a porous matrix com-
posed of freeze-dried type I collagen and hyaluronic acid
meant to mimic both mechanical and biological cues
present in the body. Both the Ewing sarcoma cell lines
and PDX cells demonstrated increased drug resistance
and closer resemblance of in vivo tumors [175].
Scaffold-based approaches could be applied to preclin-
ical NB modeling. These approaches are advantageous
as scaffolds can be fabricated from materials that mimic
the native tumor ECM (both chemically and mechanic-
ally). In addition, use of layered scaffold models with
multiple cell types can be used to model different com-
ponents of the tumor architecture.

3D co-culture models
3D models can be expanded to include multiple cell
types found in the tumor microenvironment. Villasante
et al. used a tissue engineered model consisting of sheets
of HUVEC cells and NB cells stacked to reach a total
height of ~ 100 μm placed on a “vascular bed” made of
collagen, fibrin, and HUVEC cells. The stacked vascular
bed was placed on a collagen gel with microchannels to
mimic vessel-like structures within NB [176]. This sys-
tem was cultured in a perfusion bioreactor to mimic the
in vivo environment. The therapeutic potential of iso-
tretinoin was evaluated using this model. Isotretinoin
blocks cell proliferation and reduces tumor vasculature
in vivo. Isotretinoin increased cellular apoptosis, and de-
creased mRNA levels of NB markers MYCN and GLI1.
In addition, isotretinoin weakened and disassembled the
vascular networks by blocking cell-to-cell adhesions.
Populations of both cancer cells and vascular cells resist-
ant to isotretinoin were identified. Further
characterization of resistant cells identified an increase
in SOX2 expression in the resistant population. This
correlation had not previously been identified using con-
ventional 2D culture [176].
NB cells and MSCs have been co-encapsulated inside

collagen I microspheres to investigate the impact of the
stromal environment on NB growth [177]. The MSCs
were used as they exhibit a fibroblast like morphology,
resembling CAFs in vivo. The MSCs induced increased
NB proliferation, suggesting that the stromal component
has a direct impact on tumor growth. The cultured NB
cells and MSCs exhibited a rosette-like phenotype, re-
sembling that of clinical NB. MMP9-expressing cells
were found primarily on the periphery of the micro-
spheres, which is the more migratory region. Previous
work with these microspheres identified a hypoxic core,
which could be evaluated with the NB model to mimic

the hypoxic core frequently found in clinical NB tumors
[178].
Multicellular models grown in 3D are an emerging

trend in tissue engineering in an attempt to understand
the complex tumor microenvironment. These models re-
main largely unexplored for NB; however, preliminary
studies suggest that they can provide insightful informa-
tion about tumor pathway crosstalk and potential thera-
peutic efficacy. The heterogeneity in NB, both within the
tumor microenvironment and across individual tumors,
represents a challenge to effective therapeutic develop-
ment. In vitro 3D culture of NB cells with relevant
microenvironment cells would allow for elucidation of
critical pathways and mechanisms of resistance that exist
in vivo.

Conclusion
Neuroblastoma is a heterogeneous disease, both in clin-
ical presentation and prognosis. Understanding of crit-
ical pathways in disease progression and development of
effective preclinical therapies for NB remains a chal-
lenge. Murine models, including GEMM, syngeneic, and
xenograft have been developed for therapeutic testing,
particularly geared towards mimicking high-risk pheno-
types. However, challenges remain as therapeutic devel-
opment trends toward immunotherapies and a mouse
capable of combining a human NB tumor with an intact
immune system has not been created. The future of this
likely lies within humanized immune mouse models.
These have the potential to use a mouse as a vehicle to
evaluate a human tumor, with an intact human immune
system.
Tissue engineering provides a promising approach for

development of systems capable of high throughput
therapeutic evaluation using multicellular systems. The
growth of cells in 3D allows for diffusion gradients of
nutrients, oxygen, and therapeutics similar to those
found in vivo. For development of effective models, it is
critical to incorporate multiple cell types (stromal, vas-
cular, and immune) in an environment capable of mim-
icking relevant diffusion limitations. Patient derived
tumors are the most representative of the heterogeneous
tumor phenotype. In the future, combining patient tu-
mors with patient-derived stroma and immune cells may
achieve a more accurate model for preclinical thera-
peutic testing.
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