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Quaternions as a solution to determining
the angular kinematics of human
movement
John H. Challis

Abstract

The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are
several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the
utility of quaternions will be reviewed and elaborated.
The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of
four variables compared with Cardan or Euler angles (which require three variables). A quaternion, q = (q0, q1, q2, q3),
can be considered a rotation (Ω = 2 cos−1(q0)), about an axis defined by a unit direction vector ðq1= sinðΩ2Þ; q2= sinð
Ω
2Þ; q3= sinðΩ2ÞÞ . The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or
Codman’s paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which
means numerical procedures for orientation averaging and interpolation must take account of the shape of this
surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations
demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of
quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional
orientation derivatives is reviewed.
The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple
averaging and interpolation gives it great utility for the kinematic analysis of human movement.
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Background
The discovery of quaternions is generally attributed
to William Rowan Hamilton (1805–1865) who had a
sudden insight when walking with his wife on October 16,
1843. He was so excited by this insight, generalizing
complex numbers into three-dimensions, that he
carved a key formula and the date into the Broome
Bridge in Dublin. He wrote,

i2 ¼ j2 ¼ k2 ¼ ijk ¼ −1

The quaternion was therefore,

q ¼ q0 þ q1iþ q2 jþ q3k

Where q0, q1, q2, and q3 are all real, and the imaginary
components (i, j, k) are the fundamental quaternion
units having the rules for multiplication inscribed on
Broome Bridge. The name quaternion comes from the
Latin quaternio, meaning a group of four. The term had
been previously used to refer to a group of four soldiers by
Milton in Paradise Lost (1663), and by Scott in The Waverly
Novels (1832) to refer to a word with four syllables.
Although others had envisaged quaternions before

Hamilton, for example Olinde Rodrigues [16] and
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Leonhard Euler [12], it was Hamilton who first started to
formalize their algebra. William Thomson (1824–1907)
an Irish mathematical physicist claimed that,

“Quaternions came from Hamilton after his really
good work had been done, and though beautifully
ingenious, have been an unmixed evil to those who
have touched them in any way.” [23]

Not all scientists of the time were scornful of qua-
ternions (e.g., [6]). In the last century the develop-
ment of computers, the introduction of computer
graphics, and the automation of the capture of rigid
body motion have revealed the full utility of the
quaternions in modern biomechanics.
The three-dimensional description of rigid body kine-

matics is a key step in many studies in biomechanics.
Once measured, kinematic data may require numerical
procedures such as interpolation, averaging, and differen-
tiations. For three-dimensional linear kinematic data these
procedures are relatively straightforward as linear kine-
matics are defined in three-dimensional Euclidean space.
In contrast, three-dimensional angular kinematics are de-
fined on the surface of a unit hypersphere [14], as a conse-
quence different numerical procedures are required for
operations such as interpolation and averaging. The use of
quaternions helps simplify some of these numerical proce-
dures, and provide some advantages over other methods
of describing three-dimensional angular kinematics such
as Cardan and Euler angles. Here the utility of quaternions
will be presented for: representations of rigid body orien-
tation, determining three-dimensional orientation, avoid-
ing singularities, averaging three-dimensional orientation,
interpolating three-dimensional orientations, and for
determining three-dimensional orientations derivatives.
Where appropriate the performance of quaternions will
be juxtaposed with that of Cardan and Euler angles. This
review commences with a presentation of the general
properties of quaternions.

Quaternions
There are three common ways of presenting quater-
nions. The first is as a complex number with three
imaginary parts,

q ¼ q0 þ q1iþ q2 jþ q3k ð1Þ
Where q0, q1, q2, and q3 are all real, and i, j, k are the

imaginary components. The second is 7as a vector with
four components,

q ¼ q0; q1; q2; q3ð Þ ð2Þ

This representation is the four-tuple form of the qua-
ternion. Finally, the quaternion can be represented as a
scalar (q0) and a three element vector (q ¼ ð q1; q2; q3Þ),

q ¼ q0; q
� �

ð3Þ

The products of the imaginary numbers can be
described using the following Figure (Fig. 1).
There are a number of types of quaternions, given that

the norm of a quaternion is,

j q j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ q21 þ q22 þ q23

q
ð4Þ

the primary ones are,
Pure quaternion q = (0, q1, q2,q3)
Identity quaternion q = (1, 0, 0, 0)
Conjugate quaternion q ¼ ðq0;−q1;−q2;−q3Þ
Quaternion Inverse q−1 ¼ q

jqj2
Unit Quaternion q = (q0, q1, q2,q3)
(where) ∣q ∣ = 1
The norm for the unit quaternion is equal to one,

its inverse is therefore simply its conjugate. For
describing rotations in three-dimensions unit quater-
nions are used, their intrinsic properties confering a
number of advantages.

Representations of rigid body orientation
If a rigid body in three-dimensions undergoes
translation and rotation then the new pose (pos-
ition and orientation) of any point on that body
can be described by,

Fig. 1 Products of imaginary numbers comprising a quaternion.
Given any starting point, moving in a counter-clockwise direction
(with the arrows) gives the results of the products of the imaginary
numbers (e.g., k.i = j). If the motion is clockwise then the product is
negative (e.g., j.i = −kj)
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y ¼ Rxþ v ð5Þ
Where y are points measured in pose 2, R is a 3 ×

3 attitude matrix, x are points measured in pose 1,
and v is a 3 × 1 vector describing the translation
from one pose to the other. The attitude matrix
belongs to the special-orthogonal group of order
three, R ∈ SO(3). As a consequence of being in this
group the inverse of the attitude matrix also belongs to
the special-orthogonal group, as does the product of any
matrices in this group,

RT ¼ R−1 RRT ¼ RTR ¼ I det Rð Þ ¼ 1

The attitude matrix consists of nine direction cosines,
but these elements do not convey the nature of three-
dimensional rotations.
Derived from the work of Cayley [3] there is a rela-

tionship between the attitude matrix and a skew-
symmetric matrix P,

R ¼ I−Pð Þ I þ Pð Þ−1 ð6Þ
Where I is the identity matrix, and P is a skew-

symmetric matrix which has the following format,

P pf g ¼
0 −p3 p2
p3 0 −p1
−p2 p1 0

2
4

3
5 ð7Þ

This analysis suggests that as P only has three unique
elements; in theory the attitude matrix can be described
by three elements only. The most common of these are
the Cardan and Euler angles (e.g., [26]). Both of these
angle conventions can be described as an ordered
sequence of rotations about three coordinate axes. For
the Cardan angles a sequence might be rotations about
the X, Y, and Z axes respectively,

RXYZ ¼ RZ γð ÞRY βð ÞRX αð Þ ð8Þ
Where α, β, and γ are angles of rotation about

the X Y, and Z axes respectively. For the Euler
angles a sequence might be rotations about the Z, Y,
and Z axes respectively,

RZXZ ¼ RZ γð ÞRX βð ÞRZ αð Þ ð9Þ
For this convention, the terminal rotations use the

same axis, but in theory that axis has already been ro-
tated by the middle rotation in the sequence so is in a
different orientation for the second rotation about the
axis. For both Cardan and Euler angles each can use six
different permutations of axes.

For the Z, X, Z Euler sequence the attitude matrix can
be expressed in terms of the three Euler angles (γ, β, α),

RZXZ ¼
c αð Þc βð Þc γð Þ−s αð Þs γð Þ −c αð Þc βð Þs γð Þ−s αð Þ cos γð Þ c αð Þs βð Þ
s αð Þc βð Þc γð Þ þ c αð Þs γð Þ −s αð Þc βð Þs γð Þ þ c αð Þc γð Þ s αð Þs βð Þ

−s βð Þc γð Þ s βð Þs γð Þ c βð Þ

2
4

3
5

ð10Þ
Note that cos(α) is represented by represented by c(α),

and sin(α) by s(α) and similarly for the other angles.
Inspection of the matrix reveals how the individual angles
can be extracted from the matrix,

cos βð Þ ¼ r3;3 ð11Þ

sin αð Þ ¼ r2;3
sin βð Þ ð12Þ

sin γð Þ ¼ r1;3
sin βð Þ ð13Þ

If there is only rotation about one axis then it is
relatively easy to visualize the change in orientation de-
scribed by a set of Euler or Cardan angles, but it is
harder when there is motion about two or three of the
axes.
The change of rigid body orientation described by

quaternions adds one more variable compared with Car-
dan or Euler angles (from three to four). A quaternion,
q = (q0, q1, q2, q3), can be considered a rotation of angle
Ω, about an axis defined by the unit direction vector e,
where,

q0 ¼ � cos
Ω
2

ð14Þ

and

q1
q2
q3

2
4

3
5 ¼ �e sin

Ω
2

ð15Þ

Where 0 ≤Ω ≤ π. Therefore a quaternion can be dir-
ectly visualized as a directed line in space about which
there is a rotation. For example, see Fig. . 2, if a point r0
is transformed by a rotation matrix to point r1, then
then this transformation can be visualized as a rotation
(Ω) about a line (e).
Therefore the change in the orientation of a rigid body

can be visualized from its quaternion. The problem with
characterizing a rotation using Cardan or Euler angles is
that the user must define the axis sequence with each
sequence corresponding to a different set angles for
describing the same rigid body attitude, adding to the
problems with this visualization (see Table 1). There is
no such ambiguity in quaternions.
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From Eqs. 8 and 9 it can be seen that angles as defined
by Cardan or Euler angles can be combined by taking
the product of the matrices describing the rotations to
be combined. In a similar fashion if the rotations de-
scribed by two quaternions (q and r) are to be combined
the quaternion product must be computed,

qr ¼
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

2
664

3
775

r0
r1
r2
r3

2
664

3
775 ð16Þ

Quaternion multiplication is not commutative,
therefore,

qr≠rq ð17Þ
Codman’s paradox was identified by Codman in 1934

when examining the function of the shoulder [7]. With
the arm in an initial position it is hanging by the side with
the thumb towards the front and the fingers pointing
down, first rotate the arm to the horizontal (wing
position), then rotate arm to the front (fingers are now

pointing straight ahead), then bring the arm back down to
the side. In this final position the arm has undergone an
axial rotation, therefore the thumb is now pointing to the
side (inward). In a Cardanic angle sequence this is ex-
plained because rotations about the terminal axes (first
and third) produce motion about the middle axis. With a
quaternion representation the sequence of rotations
can be considered as a rotation about each axis in se-
quence (represented by i then j then k), which results
in a rotation at the end of the sequence because ijk = − 1,
one of the basic properties of quaternions identified
by Hamilton.
Chasles theorem states that the motion of a rigid body

can be considered to be a translation along, and a rotation
about a suitable axis in space [5]. This theorem means the
description of the motion of a rigid body, or motion of
one rigid body relative to another rigid body, can be the
motion along and around a helical axis. The helical axes
have been useful to describe joint behavior (e.g., [1]). The
finite helical axis describes the motion of a rigid body
from one position to another, and is frequently used as an
approximation to the instantaneous helical axis (e.g., [2]).
The finite helical axis is defined by: the angle of rotation
(Ω) about the axis, the unit direction vector (e) of the axis,
the amount of translation (u) along the axis, and the
location of a point (s) on the helical axis. From Eqs. 3, 14,
and 15 the angle is computed from,

Ω ¼ 2 cos−1 qð Þ ð18Þ
and the unit direction vector (e),

e ¼ q
qj j ð19Þ

The amount of translation (u) along the axis comes
from,

Fig. 2 The transformation of a point r0 by a rotation of Ω about a line e, to point r1. The left image shows the general representation of the
transformation, and the right image shows a view in a plane normal to the axis of rotation

Table 1 The influence of different angle sequences on the
resulting amounts of rotations about each axis for six different
Cardanic angle sequences

Angle
Sequence

Rotation about Specified Axis (Degrees)

X Y Z

X-Y-Z 60.00 5.00 −10.00

X-Z-Y 59.12 5.08 −9.96

Y-Z-X 59.63 11.15 −0.72

Y-X-Z 59.62 9.93 −1.42

Z-X-Y 57.70 21.21 −18.89

Z-Y-X 59.49 11.15 −0.73
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u ¼ eTv ð20Þ
Finally the location of a point (s) on the axis from,

s ¼ 1þ cos Ωð Þ
2 sin2 Ωð Þ I−RT

� �
v ð21Þ

Eqs. 18 and 19 show the intrinsic relationship between
quaternions and finite helical axes.

Determining the three-dimensional orientation
Determining three-dimensional orientation of a rigid
body requires the computation of the attitude matrix
(R), this occurs in two scenarios. One is the change in
pose measured in one reference frame so the attitude
matrix would represent the change in orientation. The
other is to map from one reference frame to another,
typically inertial and body fixed, so the attitude matrix
would represent the orientation of one reference frame
relative to another. Given the basic rigid body trans-
formation equation, Eq. 5, a least-squares approach to
the problem of determining R and v would require the
minimizing of,

1
n

Xn
i¼1

Rxi þ v−yið ÞT Rxi þ v−yið Þ ð22Þ

Where n is the number of non-coplanar points mea-
sured in both reference frames (n ≥ 3), yi is the ith point
measured in pose 2, and xi is the ith point measured in
pose 1. If the data are accurate (and noiseless) the result
of this equation would be zero, but in reality this does
not occur so R and v are selected to make the result as
close to zero as possible. The identification of R and v
was presented by Grace Wahba as a numerical problem
to solved [24]. Since Wahba presented the challenge so-
lutions have emerged in many domains including photo-
grammetry (e.g., [9]), mechanical engineering (e.g., [19]),
space craft kinematics (e.g., [21]), computer vision (e.g.,
[10]), and biomechanics (e.g., [4]).
The singular value decomposition [8], can be used to

compute R and v given measurements of at least three
no-coplanar points [4]. It revolves around the decom-
position of the cross-dispersion matrix C which can be
computed from,

C ¼ 1
n

Xn
i¼1

yi−yð ÞT xi−xð Þ ð23Þ

Where x and y are the mean vectors (x ¼ 1
n

Pn
i¼1

xi , y

¼ 1
n

Pn
i¼1

yi ). The singular value decomposition of C is

computed,

C ¼ UDVT ð24Þ
Where U is a 3 × 3 orthogonal matrix, consisting of

vectors u1, u2,u3, D is a 3 × 3 diagonal matrix, whose ele-
ments are non-negative real values (the singular values),
and V is a 3 × 3 orthogonal matrix, consisting of vectors,
consisting of vectors v1, v2, v3. Then the attitude matrix,
R, is computed from,

R ¼ U
1 0 0
0 1 0
0 0 det UVT

� �
2
4

3
5VT ð25Þ

The vector v can be computed using the mean vectors,

v ¼ y−Rx ð26Þ
Given a unit quaternion the attitude matrix (R) can be

computed from,

R qð Þ ¼ q20−q
Tq

� �
I þ 2q qT−2q0S q

n o
ð27Þ

Where Sfqg generates a skew-symmetric matrix from

a vector, therefore for vector q ¼ ðq1; q2; q3Þ,

S q
n o

¼
0 −q3 q2
q3 0 −q1
−q2 q1 0

2
4

3
5 ð28Þ

Which when Eq. 27 is expanded gives,

R qð Þ ¼
q20 þ q21−q

2
2−q

2
3 2 q1q2−q3q0ð Þ 2 q1q3−q2q0ð Þ

2 q1q2 þ q3q0ð Þ q20−q
2
1 þ q22−q

2
3 2 q2q3−q1q0ð Þ

2 q1q3−q2q0ð Þ 2 q2q3 þ q1q0ð Þ q20−q
2
1−q

2
2 þ q23

2
4

3
5

ð29Þ
Note that the matrix is quadratic relative to the qua-

ternions, and unlike other parameters extracted from the
matrix does not contain transcendental functions, for
example, Eq. 10. This can be an advantage, for example,
when fast computations are required.
Inspection of Eq. 29 gives the following equations for

the extraction of the quaternions from the attitude
matrix,
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q0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1;1 þ r2;2 þ r3;3 þ 1

p ð30Þ

q1 ¼
r2;3−r3;2
4 q0

ð31Þ

q2 ¼
r3;1−r1;3
4 q0

ð32Þ

q3 ¼
r1;2−r2;1
4 q0

ð33Þ

If the quaternion describes a rotation of π radians then
then q0 = 0, therefore the remainder of the components
of the quaternion are not defined using Eqs. 31, 32, and
33. If the data used to determine the attitude matrix are
noisy then this problem can occur as the rotation ap-
proaches π radians. Shepperd [18] presented a numeric-
ally more robust method of extracting the quaternion
from the attitude matrix. The first step is the estimate
each of the components of the quaternion from,

q0
2 ¼ 1

4
1þ r1;1 þ r2;2 þ r3;3
� � ð34Þ

q1
2 ¼ 1

4
1þ 2r1;1− r1;1 þ r2;2 þ r3;3

� �� � ð35Þ

q2
2 ¼ 1

4
1þ 2r2;2− r1;1 þ r2;2 þ r3;3

� �� � ð36Þ

q3
2 ¼ 1

4
1þ 2r3;3− r1;1 þ r2;2 þ r3;3

� �� � ð37Þ

Whichever of these equations provides the largest
square root is used as the basis for computing the
remainder of the quaternion components using the ap-
propriate equations from the following,

q0q1 ¼
1
4

r2;3−r3;2
� � ð38Þ

q0q2 ¼
1
4

r3;1−r1;3
� � ð39Þ

q0q3 ¼
1
4

r1;2−r2;1
� � ð40Þ

q2q3 ¼
1
4

r2;3 þ r3;2
� � ð41Þ

q3q1 ¼
1
4

r3;1 þ r1;3
� � ð42Þ

q1q2 ¼
1
4

r1;2 þ r2;1
� � ð43Þ

For example, if Eq. 35 gives the highest value for a
quaternion component, then q0 is estimated from Eq.
38, q2 is estimated from Eq. 43, and q2 is estimated from
Eq. 42.

There are numerical methods for determining the qua-
ternion directly from common points measures in two
poses (e.g., [9, 22]), these are still based around mini-
mizing Eq. 22 and therefore give equivalent results.

Avoiding singularities
The attitude matrix consists of nine elements (3 × 3). As
this matrix is orthogonal, this property imposes six con-
straints on its nine elements, a characteristic of matrices
belonging to the special-orthogonal group of order three.
The constraints suggest that it is feasible to described
rigid body orientation using three parameters. However,
the three-parameter representations of SO(3) for certain
rigid body attitudes are singular.
To illustrate the problem with these singularities con-

sider the Cardanic sequence X-Y-Z sequence (angles α,
β, and γ),

RXYZ ¼
c γð Þc βð Þ c γð Þs βð Þs αð Þ−s γð Þc αð Þ c γð Þs βð Þc αð Þ þ s γð Þs αð Þ
s γð Þc βð Þ s γð Þs βð Þs αð Þ þ c γð Þc αð Þ s γð Þs βð Þc αð Þ−c γð Þs αð Þ
−s βð Þ c βð Þs αð Þ c βð Þc αð Þ

2
4

3
5

ð44Þ
If the middle rotation β = π/2, then then the matrix in

Eq. 44 can be expressed in terms of the two terminal
angles,

RXYZ ¼
0 cos γð Þ sin αð Þ− sin γð Þ cos αð Þ cos γð Þ cos αð Þ þ sin γð Þ sin αð Þ
0 sin γð Þ sin αð Þ þ cos γð Þ cos αð Þ sin γð Þ cos αð Þ− cos γð Þ sin αð Þ
−1 0 0

2
4

3
5

ð45Þ
This can be simplified to,

RXYZ ¼
0 sin α−γð Þ cos α−γð Þ
0 cos α−γð Þ − sin α−γð Þ
−1 0 0

2
4

3
5 ð46Þ

The matrix illustrates that the rotation depends only
on the difference between the two angles (α − γ), and
therefore only has one degree of freedom instead of two.
The rotation of β = π/2 means motions of angles α and γ
results in rotations about the same axis.
Inspection of Eq. 11, 12, and 13 show for an Euler

angle sequence of α, β, and γ the terminal angles (α, γ)
are undefined for β angles of ±nπ (n = 0, 1, 2, …), be-
cause to compute these two angles require division by
sin(β), which is division by zero for β values of ±nπ.
Similarly for Cardanic angles the terminal angles are
undefined for β angles of ±(2n + 1) π

2 (n = 0, 1, 2, …), see
Eq. 44.
These singularities can be visualized by considering

gimbal mechanism. A gimbal consists of three concen-
tric rings, with axes through each ring representing a
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rotation. The two inner rings can be rotated so they
completely overlap with one another, consequently the
rotation about one axis cannot be separated from rota-
tion about the other, thus there is a gimbal lock. In bio-
mechanics to avoid gimbal lock the sequence of
rotations for a Cardan or Euler sequence are selected so
the system, for example a joint, never approaches a
singularity (e.g., [28]).
Quaternions can be represented by positions on the

surface of hypersphere, where its radius is equal to the
quaternions norm (Fig. . 3). The quaternion representa-
tion means that a rigid bodies orientation can be visual-
ized using two quaternions, (q0, q1, q2, q3) and (-q0, -q1,
-q2, -q3). To avoid this ambiguity quaternions can be
constrained to either the top or bottom hemisphere of
the hypersphere. Given this constraint there are no
singularities or ambiguities with the quaternion definition
of rigid body attitude.

Averaging three-dimensional orientations
Three-dimensional angular kinematics are not defined in
three-dimensional Euclidean space, unlike linear vectors,
but exist on the surface of a non-linear manifold and as
a consequence the average orientation is not simply a
case of, for example, averaging a set of Cardan angles.
Consider the Y, Z, X Cardan sequence with correspond-
ing angles of ðπ2 ; π2 ; π2 Þ, the attitude matrix is,

R ¼ RX
π
2

� �
RZ

π
2

� �
RY

π
2

� �
¼

0 −1 0
1 0 0
0 0 1

2
4

3
5 ð47Þ

If the other Cardan angles to average are ð0; 0; π2Þ the
“averaged” set of angles would be ðπ4 ; π4 ; π2 Þ. The error in
this analysis is illustrated if the attitude matrix is exam-
ined for a Y, Z, X Cardan sequence with corresponding
angles of ð0; 0; π2Þ,

R ¼ RX 0ð ÞRZ 0ð ÞRY
π
2

� �
¼

0 −1 0
1 0 0
0 0 1

2
4

3
5 ð48Þ

As three-dimensional rigid body attitude is defined as
positions on the surface of hypersphere, the simple aver-
aging of Cardan or Euler angles can produce errors in
the average attitude. These errors occur because the
averaging of angles is equivalent to taking chords of a
circle, but appropriate averaging should take into ac-
count the contour of the surface described by the hyper-
sphere. Moakher [15] has demonstrated that the error in
averaging the Cardan or Euler angles, for example to
average orientations described by R1 and R2 is,

dE ¼ 2
ffiffiffi
2

p
sin

θ
2

����
���� ð49Þ

Where θ ¼ cos−1ð12 ðtrðRT
1 R2Þ−1ÞÞ. The equation indi-

cates that if the angular distance (θ) across the surface
of the hypersphere is too great then the error in the
average determined from the Cardan or Euler angles
will also be large, quaternions offer a solution to this
problem.
The average rigid body attitude can be computed from

a sequence of quaternions (qi, i = 1, m), then the average
quaternion can be computed (q),

q ¼ 1
m

Xm
i¼1

qi ð50Þ

With this approach after the averaging the quaternion
is normalized to ensure the average is a unit quaternion.
While such averaging is not statistically optimal it
does provide superior results to the averaging of
Cardan or Euler angles. An improved approach was
presented by Markley et al. [13]. Once again given a
sequence of m quaternions the matrix M is
computed,

Fig. 3 Quaternions represented on a hypersphere, where q and r are
quaternions, and qr is the quaternion resulting from their product.
Here the quaternions have been constrained to
the upper-hemisphere
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M ¼ 1
m

Xm
i¼1

qiq
T
i ð51Þ

The average quaternion is the eigenvector of matrix M
corresponding to the maximum eigenvalue.
Rigid body averaging in biomechanics can occur in a

number of circumstance, for example making multiple
measurements so that averaging improves accuracy, or
averaging repeat trials of the same task to produce a rep-
resentative time series signal(s). In the former case the
distribution of attitudes will be relatively small, and in
the latter case potentially much larger. To illustrate aver-
aging of rigid body attitudes, 1000 criterion attitude
matrices were generated via exploiting a random num-
ber generator. For each criterion attitude matrix 10 noisy
versions of the matrix were generated. The noisy matri-
ces were generated based on the error model of Wol-
tring et al. [27] where errors (Δφ) are multiplicative with
an isotropic distribution. The noisy attitude matrix ( R̂ )
is,

R̂ ¼ I þ A Δφð Þð Þ R ð52Þ

Where I is the identity matrix, and A(Δφ) is a skew-
symmetric matrix,

A Δφð Þ ¼
0 −Δφz Δφy

Δφz 0 −Δφx
−Δφy Δφx 0

2
4

3
5 ð53Þ

The error vector Δφ refers to small rotational errors
about the reference frame affixed to the body of
interest. Three noisy conditions were examined, one
with a noise standard deviation of 0.035° (e.g., [11])
to reflect errors which might occur in Roentgen
stereo-photogrammetry, one with 2° to reflect the
spread of performances which may occur if a subject
performs the same task multiple times (e.g., [25]), and
an extreme condition of 10°. For each of the 10 noisy
attitude matrices the average rigid body attitude was
determined by 1) computing the average of the
Cardan angles determined from the noisy matrices, 2)
computing the average of the quaternions determined
from the noisy matrices, and 3) computing an average
quaternion as the eigenvector of matrix M corre-
sponding to the maximum eigenvalue. To assess the
error in computing the average attitude the product
of the attitude matrix estimate of the average and
transpose of the criterion were computed,

Rerr ¼ REstR
T
Criterion ð54Þ

where RCriterion is the criterion attitude matrix, and REst

the estimated average attitude matrix. The error matrix
(Rerr) can be quantified as the error angle (θ) which can
be computed from,

θ ¼ cos−1
trace Rerrð Þ−1

2

� 	
ð55Þ

If the estimated average attitude matrix exactly equals the
criterion matrix, then the error matrix would be the identity
matrix, giving an error angle of zero. This error angle
reflects the angle through which the rigid body attitude
defined by the estimated average attitude matrix must be
rotated so that it corresponds with the attitude defined by
the criterion attitude matrix (Chasles Theorem).
When the noise level is low all three methods produce

the same performance (Table 2), this is to be expected
as taking the average of a set of angles takes the chord
to the surface of a sphere which for small noise levels is
a reasonable approximation to the surface. With increas-
ing noise level, the taking the average of a set of angles
introduces larger errors than the other two approaches.
The method of Markley et al. [13] is superior to the
simple averaging of quaternions, and subsequent
normalization, but the latter approach gives a reasonable
approximation if speed of processing is important.

Interpolating three-dimensional orientations
The three-dimensional attitude of a rigid body can be
determined using a variety of methods, including image-
based motion analysis or the use of an inertial measure-
ment unit. Given these data there are a number of
reasons why it might be interpolated. For example, when
trying to temporally align signals collected at different
rates, or to increase the temporal density of collected
data. The increase of the temporal density of sampled
data is appropriate if data collection has observed
Shannon’s sampling theorem [17].

Table 2 The error angle corresponding to the estimation of
rigid body attitude from multiple rigid body attitude
measurements. Three methods are compared: the average of
Cardan angles, the average and subsequent normalization of
quaternions, and using the method of Markley et al. [13] for
processing a set of quaternions

Method Noise Standard Deviation

0.035 2 10

Average of Cardan Angles 0.009 0.90 4.23

Average of Quaternions 0.009 0.51 2.76

Markley et al. Quaternion Method 0.009 0.51 2.74
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Vectors are relatively easily interpolated as vectors exist
in linear space. In contrast quaternions exist in a curved
space as each quaternion corresponds to a point on a unit
hypersphere, therefore appropriate interpolation between
pairs of quaternions must allow for the shape of the hyper-
sphere surface. An appropriate approach to interpolating
quaternions will ensure a consistent angular velocity be-
tween a pair of quaternions. The procedure typically used
for quaternion interpolation is called Slerp, a name which
derived from Spherical linear interpolation [20]. The Slerp
formula for interpolating between two quaternions q1 and
q2 is,

q ¼ sin 1− fð Þθð Þ
sinθ

q1 þ
sin fθð Þ
sinθ

q2 ð56Þ

Where θ is the angle between the two quaternions
(which can be computed from their dot product), and f
is the fraction of interval between the two quaternions
for which a quaternion is to be estimated (0 < f < 1).
The errors which arise if rigid body attitude data is not

appropriately interpolated parallel those which occur if
these data are not appropriately averaged, with the errors
arising being larger the greater the time interval over which
interpolation is to be performed, as greater time is likely as-
sociated with greater motion. If linear interpolation is used
the surface of the hypersphere is approximated by a chord
(Fig. 4). Slerp ensures that interpolated points lie on the
surface of the hypersphere.

Three-dimensional orientations derivatives
Angular velocity is the rate of change of the orientation
of one reference frame with respect to another, therefore
the angular velocities cannot simply be computed from
the differentiation of the orientation angles. Angular
velocities can be computed from Poisson’s equation [26],
for example given the attitude matrix (R) at a given time
instant,

A ωf g ¼ ṘRT ð57Þ

(Where) Afωg ¼
0 −ωZ ωY

ωZ 0 −ωx

−ωY ωX 0

2
4

3
5

The computation of the angular velocities from
quaternions is straightforward,

ωX

ωY

ωZ

2
4

3
5 ¼

−q1
−q2
−q3

−q0
q3
−q2

−q3
q0
q1

q2
−q1
q0

2
4

3
5

q0
:

q1
:

q2
:

q3
:

2
664

3
775 ð58Þ

Conclusion
There is an efficiency to using quaternions. Compared
with other approaches (e.g., Euler angles, Cardan angles),
the quaternion does not suffer from singularities when
defining rigid body orientation, and therefore avoids the
gimbal lock. The quaternion represents the direction co-
sine matrix as a homogenous quadratic function of the
components of the quaternion, unlike other approaches
it does not require trigonometric or other transcendental
function evaluations. It is also efficient for combining
rotations, averaging rotations, interpolating rigid body
orientations, and the computation of derivatives.
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