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Abstract

Background: High occupational physical activity is associated with lower health. Shoe-based movement sensors
can provide an objective measurement of occupational physical activity in a lab setting but the performance of
such methods in a free-living environment have not been investigated. The aim of the current study was to
investigate the feasibility and accuracy of shoe sensor-based activity classification in an industrial work setting.

Results: An initial calibration part was performed with 35 subjects who performed different workplace activities in a
structured lab setting while the movement was measured by a shoe-sensor. Three different machine-learning
models (random forest (RF), support vector machine and k-nearest neighbour) were trained to classify activities
using the collected lab data. In a second validation part, 29 industry workers were followed at work while an
observer noted their activities and the movement was captured with a shoe-based movement sensor. The
performance of the trained classification models were validated using the free-living workplace data. The RF
classifier consistently outperformed the other models with a substantial difference in in the free-living validation.
The accuracy of the initial RF classifier was 83% in the lab setting and 43% in the free-living validation. After
combining activities that was difficult to discriminate the accuracy increased to 96 and 71% in the lab and free-
living setting respectively. In the free-living part, 99% of the collected samples either consisted of stationary
activities or walking.

Conclusions: Walking and stationary activities can be classified with high accuracy from a shoe-based movement
sensor in a free-living occupational setting. The distribution of activities at the workplace should be considered
when validating activity classification models in a free-living setting.
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Background
Industry work is associated with a high physical work-
load. Although leisure-time physical activity is associated
with health, the opposite is true with physically active
works [1]. High occupational physical activity (OPA) is
associated with more long term sickness absence as well
as all-cause mortality [1, 2]. OPA is also a factor contrib-
uting to fatigue, which in a work setting could lead to

serious injury or death [3]. Consequently, assessment of
OPA would provide indication of detrimental volume,
allowing appropriate adjustments of work tasks before
fatigue occurs.
Objective monitoring of physical activity is widespread

in research; occupational, epidemiological and clinical
[4, 5]. However, the most common sensor positions are
the hip or thigh, which are unpractical for monitoring
OPA over time among industry workers. Since industry
work often require safety shoes, because of e.g. toe pro-
tection and slip resistance, a sensor built into these
shoes would be a practical and relatively easily imple-
mentable solution in an occupational setting. Previous
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work has shown that an accelerometer placed on a shoe
has similar accuracy in predicting activities as other
placements [6], but the performance of shoe based sen-
sors have not been evaluated in a free-living setting pre-
viously [7].
Sensor based physical activity classification is usually

based on data recorded by one or more accelerometers
[4]. The raw acceleration signal is processed to display
specific features. Features comprise for instance mean
acceleration, max frequency, correlation between axes
that are calculated continuously over a moving window.
These features are then used for activity classification,
either using simple empirically derived decision trees [8],
or using statistical methods, called machine-learning,
that is more common today [9]. Machine-learning algo-
rithms can be developed to be extremely accurate in a
structured setting reaching 98–100% accuracy [9, 10].
However, when applying the algorithms to other struc-
tured datasets (lab-data) the accuracy drops significantly
[11], and with free living datasets, the accuracy is re-
duced even further [12].
The aim of the current study was to investigate the

feasibility and accuracy of shoe sensor-based activity
classification in an industrial work setting. Therefore, in
a first step, shoe acceleration data was captured in a
structured setting (standardized lab-activities) to develop
an activity classification machine-learning algorithm that
will be able to reliably distinguish between different ac-
tivities. In a second step, the algorithm was validated in
a free-living setting (at the workplace).
The following research questions were examined in

this study:

1. Is it possible to reliably classify work specific
activities with acceleration signals captured from a
shoe-based sensor?

2. Does this activity classification work in a free-living
(workplace) setting?

Results
The study consisted of two parts, a calibration part in a
controlled setting and a validation part in a free-living
workplace setting. Thirty-five subjects participated in the
calibration part. Information about the test subjects can
be seen in Table 1.
Subjects wore an accelerometer attached to their right

shoe while performing seven standardized activities. The

accelerometry data was processed to signal features used
to train three different machine learning classification
models to classify the standardized activities. The classi-
fication models used were random forest (RF), support
vector machine (SVM) and k-nearest neighbour (KNN).
The lab accuracy of the initial classification models are
presented in Table 2 (Lab calibration 7 activities). The
RF model accuracy was slightly higher than the other
two models, but all within one percentage point. The ac-
tivity specific performance of the RF model is presented
as a confusion chart in Fig. 1. The distribution of accur-
acy between the different activities were similar between
the three models. The RF accuracy of the different activ-
ities (blue marked) range from 45.8% (sitting) to 100%
(kneeling). The model had difficulties differentiating
standing and sitting (64.9 and 45.8% respectively). The
classification accuracy of weight carrying was also less
accurate (80.8%). 54.2% of sitting was misclassified as
standing, 33.2% of standing was misclassified as sitting
and 14.9% of weight carrying was misclassified as
walking.
Twenty-nine subjects took part in the validation part

of the study. The age and body mass index (BMI) of the
subjects in the validation part was significantly different
from the subjects in the in-lab calibration part (Table 1).
Fifteen subjects were working at a logistics centre ware-
house and 14 subjects were working in industrial pro-
duction. An average of 48 min of free-living data was
captured for each participant using an accelerometer at-
tached to their right shoe. The performance of the three
classification models in the free-living setting is pre-
sented in Table 2. Similar to the lab results, the RF
model had the best accuracy, but in the free-living valid-
ation the differences between methods are much larger
with 7.3 and 13.4 percentage points for SVM and KNN
respectively. The activity specific performance of the RF
model is presented as a confusion chart in Fig. 2. Num-
bers inside the chart are normalized to the total number
of samples and shows the distribution of activities in
addition to the accuracy. The activity specific sensitivity
(the proportion of observed samples classified correctly)
ranged from 4.0% (kneeling) to 60.0% (stair descending)
and the activity specific specificity (the proportion of
classified samples in agreement with the observation)
ranged from 0.7% (weight carrying) to 87.7% (walking).
Similar to the lab-performance, sitting and standing was
difficult to differentiate. In contrast to the lab-results,
most of the observed stair ascending were classified as
stair descending. The specificity of walking was high
(87.7%) but the sensitivity was low (22.4%). This was be-
cause many of the observed walking samples were classi-
fied as either stair descending or weight carrying but
samples that were classified as walking mainly consisted
of observed walking.

Table 1 Subjects details

N (% female) Age (SD)*** BMI (SD)***

Lab calibration 35 (49%) 25.4 (6.0) 23.1 (2.3)

Free-living validation 29 (10%) 38.7 (11.5) 26.8 (3.5)

BMI: Body Mass Index, SD: Standard Deviation, *** indicates significant group
differences p < 0.001.
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Three additional calibration models based on five ac-
tivities were developed by using the same calibration
data but combining sitting and standing into stationary
and combining stair ascending and descending into stair
walking. Similar to the initial seven activities models, the
RF model outperformed the SVM and KNN models in
lab and free-living validation (Table 2). The activity spe-
cific performance of the second RF model is presented
in Fig. 3 (lab) and Fig. 4 (free-living). The classification
accuracy of the in lab weight carrying was still less ac-
curate (80.4%). In free-living, the predictions of the sec-
ond model was highly accurate (88–91%) with regard to
stationary and walking activities. These activities made
up 99% of the collected samples. However, the perform-
ance on the rest of the activities were very low. To inves-
tigate the effect of activity type in the validation data, a
sub analysis was performed on the industrial production
and logistics warehouse data separately. With the indus-
trial production data the accuracy of the seven and five
activities models was 40.4 and 66.9% respectively. The
accuracy was higher with the logistics warehouse data at
47.2 and 77.8% with the seven and five activities models
respectively.

Discussion
The RF classification model consistently outperformed
the KNN and SVM models. The difference between
models were negligible in the calibration setting but in-
creased drastically in free living validation. The lab-
setting RF model classification accuracy of activities at
the workplace was consistently high except for standing
and sitting (Fig. 1). In the free-living setting on the other
hand, the classification accuracy was initially low across
all activities (Fig. 2). After combining standing and sit-
ting to stationary activity as well as combining stair as-
cending and descending to stair walking, the level of
accuracy for both activities increased in the lab and free-
living environment (Fig. 3-4). The good overall perform-
ance of the second RF model in the free living (71%) can
be explained as 99% of the samples captured consisted
of either walking or stationary activity.
Combining sitting and standing and not being able to

distinguish between the two might be considered a
major shortcoming of the classification model. On the
other hand, although there is a small increase in energy
consumption from standing compared to sitting [13, 14],
standing is still considered a sedentary activity [15] and

Table 2 Accuracy of models

Random forest Support vector machine K-nearest neighbour

Lab calibration 7 activities 83.3% 82.3% 82.5%

Lab calibration 5 activities 96.3% 95.0% 95.7%

Free-living validation 7 activities 43.0% 35.7% 29.6%

Free-living validation 5 activities 71.2% 67.1% 63.4%

Fig. 1 Performance of initial random forest classifier in the lab calibration setting. The numbers in the chart are row normalized, showing the
distribution of the classification of the samples from each activity according to the test protocol. Y-axis shows the activity performed according to
the test protocol. X-axis shows the predicted activity from the trained classification model
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there are no cardiovascular health benefits with standing
compared to sitting [16]. During both sitting and stand-
ing the feet are usually parallel to the ground and no
movement occurs. Since the inclination and movement
of the sensor is used for classification, this explains the
difficulty discriminating the two stationary activities.

Stair ascending and descending were also combined to a
single activity in the second model. However, these ac-
tivities are associated with significantly different energy
expenditure as opposed to sitting and standing [14]. The
estimated workload from stair walking might therefore
be underestimated. Although, in most cases, stair de-
scending and ascending could be assumed to be equally
distributed.
The initial classification models’ performance were

poor for all free-living activities (Fig. 2). The reason only
standing/sitting and stair ascending/descending was
combined was that these activities was clearly mixed up
with each other but not with any other activity. With the
other activities, the misclassification was more spread
out. The differentiation between walking and stationary
activities could probably just as well have been per-
formed using an acceleration intensity metric alone [4].
However, activity type might be a more applicable out-
put for the workplace than the abstract intensity
measures.
Other weaknesses of the study are the significant sex,

age and BMI differences between subjects in the two
study parts. The participants in the validation group
consisted of more men, were older and had higher BMI
than the participants in the calibration group, which
might have affected the classification performance. It
should also be considered that the validation was per-
formed indoors only whereas parts of the calibration was
performed outdoors. Although the outdoor walking in
the calibration part was also done at slow pace, most of

Fig. 2 Performance of initial random forest classifier in the free-living workplace setting. The numbers in the chart are relative to the total
number of samples. This implies that both the accuracy and distribution of observed and predicted samples can be identified from the chart. Y-
axis shows the observed activity. X-axis shows the predicted activity from the classification model trained on lab data. The two columns to the
right indicate the activity specific sensitivity (the proportion of observed samples classified correctly) and the two rows at the bottom indicates
the activity specific specificity (the proportion of classified samples in agreement with the observation)

Fig. 3 Performance of second random forest classifier in the lab
calibration setting with sitting and standing combined to stationary
as well as stair ascending and descending combined to stair
walking. The numbers in the chart are row normalized, showing the
distribution of the classification of the samples from each activity
according to the test protocol. Y-axis shows the activity performed
according to the test protocol. X-axis shows the predicted activity
from the trained classification model
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the indoor walking in the validation part might have
been done at even slower pace. Calibration of stair walk-
ing and weight carrying was performed indoors and at
slower speeds than the normal walking speed, which
could explain the misclassification of free-living walking
into these activities (Fig. 4). The workers in the logistics
warehouse were covering larger areas while walking,
whereas the workers in productions were mainly walking
a few steps between machines. Covering larger areas
could make the difference between walking and station-
ary more prominent and explain the higher accuracy in
with the logistics warehouse data.
Although direct observation is considered the criterion

method for activity classification in a free-living setting
[4], this method is not perfect. It has been shown that
direct observation has an accuracy of 87% where the ac-
tivity classification of senior researchers was considered
the reference [17]. In a free-living setting, the activities
might not be equivalent to the standardized lab-
activities. Most of the validation data consisted of stand-
ing work that was stationary most of the time with walk-
ing a few steps in between (Fig. 2), which could be
difficult to define with the current classification scheme.
Many studies on accelerometer based machine-

learning classification models have been published previ-
ously, most of them using similar techniques as the
current study [9, 18]. We have only found one other
study that investigated the performance of a lab cali-
brated machine-learning method in a free living setting

and there the accuracy was 49–55% [12]. The accuracy
of the current study is substantially higher at 71% (Fig.
4) although it is very low with some activities. However,
the activities classified are different in the two studies.
Lab calibration of activity classification may be prone to
overfitting, even when validating the model using leave
one subject out cross validation [18]. Nevertheless, RF
classification models are in general relatively robust to
over fitting, but on the other hand may perform poorly
on data that deviate much from the training data [19].
The main limitation in generalization of lab developed
activity classification models is thought to be the diverse
activity types, different characteristics within each activ-
ity type and individual variation [18]. The limited num-
ber of samples with other activities than stationary and
walking at the two workplaces in the validation part
limits further analysis of the accuracy of the classifica-
tion of these activities. The classification model might
perform better in a setting where other activities are
more common. The difference in accuracy between
workers in the logistics warehouse and industrial pro-
duction also supports this assumption. A more diverse
free-living dataset with a more even activity distribution
could also be used to improve the classification algo-
rithm further by analysing the temporal structure of ac-
tivities [20].
Certain work-related physical activity patterns are sug-

gested to have a negative health effect. For example, pro-
longed physical activity elevates 24-h heart rate and

Fig. 4 Performance of second random forest classifier in the free-living workplace setting with sitting and standing combined to stationary as
well as stair ascending and descending combined to stair walking. The numbers in the chart are relative to the total number of samples. This
implies that both the accuracy and distribution of observed and predicted samples can be identified from the chart. Y-axis shows the observed
activity. X-axis shows the predicted activity from the classification model trained on lab data. The two columns to the right indicate the activity
specific sensitivity (the proportion of observed samples classified correctly) and the two rows at the bottom indicate the activity specific
specificity (the proportion of classified samples in agreement with the observation)
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static postures and lifting is suggested to elevate 24-h
blood pressure [21]. Such patterns might be detected by
the activity classification system suggested in this paper.
Continuous monitoring of workload among industrial
workers could be used in many ways for preventive mea-
sures and improving health. The monitoring gives basic
data on the distribution of physical workload across dif-
ferent tasks at the workplace. This can be utilized when
partitioning tasks between workers, both with regard to
sharing heavy work between more employees and to
lower the physical demand on specific individuals. Con-
tinuous monitoring also provides the possibility to follow
workload over time, which might enable identification of
employees getting fatigued at an early stage. This could
potentially result in an overall less long-term sickness
absence and better health status among workers [1].
However, constant monitoring of activities during work
do raise concerns regarding privacy of the workers [5].

Conclusion
The results of the study shows that walking and station-
ary activities can be classified with high accuracy from a
shoe based accelerometer. In order to accurately classify
other activities (kneeling, stair ascending and descending
and weight carrying), workplaces with a higher number
of those activities should be considered. However, the
present study also addresses issues with activity distribu-
tion when classifying activities in a free-living setting. It
highlights difficulties with free-living validation of activ-
ity classification with regard to generalisation of lab-
calibrated classification, observation of activities and ac-
tivity dispersion in free-living. Despite this, the results
suggest that activity classification using shoe-based sen-
sors could give accurate and comprehensive feedback on
walking and stationary activities in an occupational
setting.

Methods
Subjects for the calibration part were recruited through
e-mail announcements to students and staff at the De-
partment of Food and Nutrition and Sport Science and
personal communication. Written informed consent was
retrieved from the subjects and the study was approved
by the regional ethics committee in Gothenburg (no.
765–18).
For the data collection, subjects wore safety shoes

(Ergo-Active Grant, Elten GmbH, Uedem, Germany) in
their respective size (EU 36–48) and width (narrow,
medium, wide). Accelerometers (AX3, Axivity Ltd.,
Newcastle upon Tyne, UK) were then firmly attached to
the heel-cap of each shoe orthogonal to the outsole
using non-elastic adhesive tape. The accelerometers
were set to record triaxial acceleration at a sampling fre-
quency of 100 Hz and a range of +/− 16 g, where 1 g is

equivalent to the gravitational acceleration. These speci-
fications were sufficient to capture all acceleration re-
lated to human movement [22].
The test protocol of the calibration part consisted of

eight activities that were performed by the subjects con-
tinuously for 1–4 min.

� Sitting on a chair, while solving Sudoku on a table
� Standing, while solving Sudoku on a high table
� Walking slow, self-paced, outdoors
� Walking brisk, self-paced, outdoors
� Stair ascending
� Stair descending
� Weight carrying while walking, 15 kg
� Kneeling

All analyses were performed in MATLAB R2018b
(MathWorks, Natick, MA, USA). Acceleration was cap-
tured between the 6th and 55th second of the last mi-
nute of each activity. Using a 2 s window with 50%
overlap [23], 26 signal features [6] were calculated for
the extracted acceleration for each shoe. The features
from each window were labelled according to the test
protocol. Features and activity type from one subject are
presented as an example in Fig. 5. Samples with outliers
were removed from the data from each activity using a
criterion of more than three scaled median absolute de-
viations (MATLAB rmoutliers-function). The labelled
data was used as training data to generate three different
machine-learning classification algorithms, random for-
est (RF), support vector machine (SVM) and k-nearest
neighbour (KNN). These are among the most commonly
used techniques for classifying activity based on acceler-
ometer data [9, 18]. The models were implemented as
an ensemble of bagged decision trees (RF), third degree
support vector machine (SVM) and the ten nearest
neighbours weighted by the inverse distance squared
(KNN) using the MATLAB Classification Learner. Valid-
ation of the classification algorithms was performed by
leave-one-out validation for each subject. This validation
technique implies that there will never be data from the
same subject in both the training- and validation data
set simultaneously which leads to a more realistic accur-
acy measure [24].
Recruitment of subjects for the free-living validation

part took place at an industrial workplace through infor-
mation to the workers. Written informed consent was
retrieved from the workers who agreed to participate.
Subjects were fitted with the same kind of shoes as in
the calibration part with the same accelerometers at-
tached to the heel-cap. Then the subjects were told to
work as usual while followed by an observer. The obser-
ver noted the start, end and type of each activity con-
tinuously for about 60 min. Since separating standing
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and walking could be difficult during standing work,
walking was considered continuous movement more
than three meters. This way a few sidesteps during
standing work would still be considered a standing
activity.
The collected accelerometer data was processed as in

the calibration part of the study. The different features
were input to the developed classification algorithms to
get a predicted activity for each window. The observed
activities were then compared to the activities predicted
by the classification models using confusion charts. The
lab-setting performance was analysed using row normal-
ized confusion charts. With the free-living confusion
charts, the cells were normalized to the total number of
samples since the distribution of samples between the
observed activities were not even. The activity specific
sensitivity and specificity of the classification models
were also added to the confusion charts of the free-
living results. To show the strengths and limitations of
the classification models, activities that could possibly be
difficult to discriminate between were combined in a
second analysis (sitting and standing to stationary and
stair ascending and descending to stair walking). A sub

analysis of the free-living performance on the logistics
warehouse and industrial production workers was per-
formed to investigate the impact of different activities in
the validation data. BMI and age differences between the
calibration and validation groups were evaluated using a
two-sample t-test with a significance level of p < 0.05.
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