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Abstract 

Background The number of steps by an individual, has traditionally been assessed with a pedometer, but increas-
ingly with an accelerometer. The ActiLife software (AL) is the most common way to process accelerometer data to 
steps, but it is not open source which could aid understanding of measurement errors. The aim of this study was to 
compare assessment of steps from the open-source algorithm part of the GGIR package and two closed algorithms, 
AL normal (n) and low frequency extension (lfe) algorithms to Yamax pedometer, as reference. Free-living in healthy 
adults with a wide range of activity level was studied.

Results A total 46 participants divided by activity level into a low-medium active group and a high active group, 
wore both an accelerometer and a pedometer for 14 days. In total 614 complete days were analyzed. A significant 
correlation between Yamax and all three algorithms was shown but all comparisons were significantly different with 
paired t-tests except for ALn vs Yamax. The mean bias shows that ALn slightly overestimated steps in the low-medium 
active group and slightly underestimated steps in high active group. The mean percentage error (MAPE) was 17% and 
9% respectively. The ALlfe overestimated steps by approximately 6700/day in both groups and the MAPE was 88% in 
the low-medium active group and 43% in the high active group. The open-source algorithm underestimated steps 
with a systematic error related to activity level. The MAPE was 28% in the low-medium active group and 48% in the 
high active group.

Conclusion The open-source algorithm captures steps fairly well in low-medium active individuals when compar-
ing with Yamax pedometer, but did not show satisfactory results in more active individuals, indicating that it must be 
modified before implemented in population research. The AL algorithm without the low frequency extension meas-
ures similar number of steps as Yamax in free-living and is a useful alternative before a valid open-source algorithm is 
available.
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Background
Physical activity brings major health benefits by lowering 
the risk for cardiovascular disease as well as other lifestyle 
related diseases, depression and musculoskeletal injuries 
[1]. Both for surveillance and research, it is of importance 
to measure physical activity, for example to determine 
compliance to national recommendations and to study 
the importance of physical activity to health. Number 
of steps provide important health benefits from physical 
activity since most of the body is engaged in the activity. 
The activities performed producing steps, like walking, 
running or in some sports, are easily accessible for most 
people [2]. A common way to measure steps in research 
is with pedometers because they are cheap, small, easy to 
use [3]. Because of this, pedometers are often used in epi-
demiological research [3]. Modern pedometers consist 
of an accelerometer where the information to determine 
steps is used only. However, accelerometer data can pro-
vide additional information such as intensity level, energy 
expenditure for different activities and even data on sleep 
[4]. Nevertheless, the number of is steps is still a useful 
metric because of its simplicity but the accelerometer sig-
nal needs to be processed.

A number of factors have to be taken into consid-
eration, including body position and sampling rate, that 
determines how strong the accelerometer signal is [5]. 
Further, a frequency filter is applied to reduce noise [6]. 
Placement at the hip has shown the be the most reliable 
position to register steps [7]. The most common acceler-
ometer is the ActiGraph with the model GT3X [7], which 
has its own software called ActiLife (AL) for processing 
data [8]. However, it is rather expensive and the algo-
rithm for processing data is not accessible. This makes 
it hard to analyze and understand measurement errors, 
which is a problem in research. A low frequency exten-
sion (lfe) filter has been added to AL to detect activities 
at a lower intensity. However, ALlfe has shown to have 
difficulties filtering out noise compared with the normal 
AL filter (ALn) in free-living, contributing to overestima-
tion of steps compared to a criterion pedometer [9]. Early 
studies comparing accelerometer and pedometer steps 
found strong correlation but low agreement, were the 
accelerometer often reported more steps when using AL 
than the pedometer [10]. A more recent study in free-liv-
ing shows a slight underestimation of steps from acceler-
ometer data when using ALn compared with pedometers 
[11]. Other brands of accelerometers such as the Axivity 
only provides the raw acceleration data which means that 
an algorithm for steps needs to be developed.

To determine the true number of steps, visual step 
counting (direct observation) is considered the golden 
standard [12]. However, this is only possible in a lab-
oratory setting and not in free-living conditions, in 

which case a camera attached to the body can be used 
instead. This is only possible for a few hours due to the 
discomfort. Therefore, a true free-living golden stand-
ard for steps is not yet accessible. Instead, free-living 
studies are mostly designed for concurrent validity, 
where two or more devices are compared to determine 
their agreement.

To get a standardize method for discerning the num-
ber of steps from accelerometer data, it necessitates 
that the algorithm is open source, making it is easy to 
analyze and share between researchers. Some popular 
algorithms used for steps in accelerometers are peak 
detection, autocorrelation, and continuous wavelet 
transformation (CWT) methods [13]. CWT has shown 
good accuracy against steps counted by a body camera 
in semi free-living setting in healthy subjects [14, 15]. 
Even though these algorithms seem to perform well, 
they are hard to replicate without a vast programing 
knowledge since they are not open source. An open-
source algorithm based on autocorrelation is available 
that has been used as part of the rehabilitation for car-
diovascular patients and showed low errors compared 
with manual step count in a controlled setting [12]. 
Another popular method is peak detection which seems 
to perform the best overall, when comparing different 
algorithms across different positions and activities [13]. 
It scans the signal for peaks over a set threshold and 
uses different constraints to eliminate false peaks [12]. 
An open-source algorithm based on peak detection has 
been presented in a semi free-living setting, with a 95% 
accuracy when compared to manually counted steps 
[16] and 89% accuracy in a controlled setting [17]. This 
algorithm is open source and performs well in a con-
trolled setting, but might have to be further developed 
before tested in free-living.

A proposed method that is also based on peak detec-
tion is an open-source algorithm [18] that is part of GGIR 
that is a widely used package on processing accelerome-
ter data [19]. It is based on an algorithm that implements 
constraints to detect and eliminate false steps [20]:

• Periodicity: Time difference between two peaks 
for the same activity (walking, running etc) is rather 
fixed since they take place at the same speed. So, a 
more varying time difference between peaks will be 
identified as activities other than steps and therefor 
discarded.
• Similarity: The acceleration for steps should look 
similar in nature, which means that the peaks in a 
window look similar or are discarded.
• Continuity: The number of neighboring windows of 
acceleration surpassing a threshold to form bouts of 
gait over a certain period.
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Compared with a conventional peak detection 
method, the constraints improved the accuracy by 6.6% 
for normal walking,9.5% for free walking and 58.9% for 
data that includes false steps [20] in healthy individu-
als. The algorithm has also been tested on patients with 
cardiovascular disease in a controlled setting wearing a 
accelerometer on the wrist [12], and in 30 participants 
walking 350  m regular, semi-regular and unstructured 
with a video recording as reference [21]. Both the stud-
ies showed satisfying results. The accuracy of this open-
source algorithm has shown promising results, but it 
still needs to be tested on a larger data set with a variety 
of activity levels, in a free-living setting over multiple 
days. It also needs to be compared to other commonly 
used accelerometer step count methods such as AL 
before it can be implemented in larger epidemiological 
studies.

Therefore, the aim of this study was to compare 
assessment of steps from the open-source algorithm 
part of the GGIR package and the ALn and ALlfe algo-
rithms to Yamax pedometer (as reference), during free-
living over multiple days, in healthy adults with a wide 
range of physical activity levels.

Results
Steps from a total of 614 days were used in this study. The 
participants were categorized into low-medium and high 
active groups for analysis purpose and are presented in 
Table 1.

Both AL algorithms and Yamax showed strong 
correlation in both groups, with a slightly stronger 
correlation between Yamax and ALn (Table 2). The corre-
lation between Yamax and GGIR were strong in the low-
medium active group, but lower in the high active group. 
The Yamax and ALn had similar mean values for steps 
in both groups with a small overestimation in the low-
medium active group and small underestimation in the 
high active group. In contrast, ALlfe overestimated steps 
and GGIR underestimated steps in comparison to Yamax 
in both groups. These differences are also reflected in the 
large mean absolute percent error (MAPE) for ALlfe ver-
sus Yamax in both groups, especially in the low-medium 
active group. The MAPE for GGIR versus Yamax was 
instead larger in the high active group.

Altogether, the results confirm a systematic error where 
ALlfe overestimates and GGIR underestimates the num-
ber of steps compared to Yamax. In the case of GGIR, 
the systematic error was depended on the activity level. 
This is further highlighted in the Bland–Altman plots 
presented in Fig. 1, which reveals the distribution of the 
measurement errors at an individual level. The systematic 
error and the larger individual variation in the measure-
ment error correspond to the larger MAPE for ALlfe and 
GGIR compared to ALn. Although the mean difference 
between ALlfe and Yamax was the same in both groups, 
the MAPE was larger in the low-medium active group 
as the error in relation to the total number of steps is 
larger. The Bland–Altman plot for GGIR versus Yamax 
visualizes the differential systematic error with increasing 

Table 1 Participant characteristics

Overall Low-medium High

Individuals, n (% female) 46 (54%) 22 (64%) 24 (46%)

Age, years, mean (sd) 29 (5) 28 (5) 30 (5)

Weight, kg, mean (sd) 72 (15) 76 (20) 68 (8)

Height, cm, mean (sd) 175 (10) 172 (11) 178 (9)

Days of complete data 614 298 316

Table 2 Daily steps determined from the different accelerometer algorithms and from the Yamax pedometer in the low-medium and 
high active groups

ALn ActiLife normal filter, ALlfe ActiLife low frequency extension, GGIR open-source algorithm, MAPE mean absolute percent error

Group Steps Correlation Difference

Algorithm Mean (sd) r p-value Mean (sd) p-value MAPE (%)

Low-med
 Yamax 7783 (4248) - - - - -

 ALn 8037 (4064) 0.88  < 0.001 254 (2078) 0.04 17

 ALlfe 14,452 (5474) 0.83  < 0.001 6669 (3050)  < 0.001 88

 GGIR 6654 (3978) 0.77  < 0.001 -1129 (2800)  < 0.001 28

High
 Yamax 16,773 (7409) - - - - -

 ALn 16,375 (7324) 0.94  < 0.001 -398 (2645) 0.008 9

 ALlfe 23,624 (7962) 0.87  < 0.001 6851 (3886)  < 0.001 43

 GGIR 9361 (4199) 0.45  < 0.001 -7412 (6665)  < 0.001 48
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Fig. 1 Difference in daily steps for each of the algorithms compared to Yamax across the range of steps. Each circle representing one day. 
Horizontal lines indicate mean (± 2sd) difference



Page 5 of 7Holm et al. BMC Biomedical Engineering             (2023) 5:3  

underestimation by increasing number of steps. This fig-
ure also reveals the larger individual variation in the error 
in the high active group corresponding to the difference 
in MAPE between the groups, which confirms a larger 
random error.

Discussion
The results of this study shows that the ALn algorithm 
performs closest to Yamax across the range of physical 
activity level, with a small measurement error both at 
group and individual level. This seems to be in accordance 
with what previous studies have shown in a free-living 
setting when comparing with a pedometer in a healthy 
population in the same age span but without regulation 
in activity level [11]. Hence, ALn is suitable to be used in 
a variety of populations. The ALlfe largely overestimated 
by approximately 6700 steps/day compared to Yamax and 
this systematic error was similar in both groups. That 
ALlfe tends to generate more steps compared with the 
other measurements follows the trend in previous studies 
[9]. ALlfe is made to capture steps in a low active group 
such as elderly with walking impairments, who are at a 
much lower activity level than the low-medium group in 
this study. This means that the results shown here might 
have been expected since ALlfe records noise at a low 
frequency which might not be actual steps, noise that the 
ALn filters out. In addition, there was a large individual 
variation in the error (random error), especially in the 
low-moderate active group were the MAPE is 88% com-
pared to 43% in the high active group. When looking at 
the Bland–Altman plot in Fig. 1 this difference in MAPE 
can be hard to understand. This is explained in relation 
to the total number of steps, were individuals in the high 
active group takes more steps which means that the per-
centage shown by MAPE becomes smaller. If the indi-
vidual error would instead be presented as mean absolute 
error (MAE), the groups would probably be more similar.

The open-source GGIR algorithm underestimates steps 
compared with Yamax. It is clear that the systematic 
error is related to activity level where the underestima-
tion becomes larger the higher the step output is. This is 
highlighted by the mean difference of -1129 in the low-
medium group and -7412 in the high active group and 
the visualization in the Bland–Altman plot in Fig. 1. This 
is most likely a result by the constraints put in the algo-
rithm to remove false steps. When the step frequency 
increases, too many real steps are filtered out. Since most 
participants in the high active group are long distance 
runners it is possible that the GGIR algorithm have prob-
lems detecting activities such as running which could 
explain the discrepancy between the algorithms in the 
high active group. This makes sense since the GGIR algo-
rithm has only been developed for walking at different 

speeds and not for running [20]. The individual error 
(random error) is high across both groups with a MAPE 
of 48% in the high active and 28% in the low-medium. 
However, since the low-medium group still can be physi-
cally active up to 3  h per week, it is possible that the 
measurement error is related to activities of higher inten-
sities such as running in this group as well.

A previous study of cardiac rehabilitation showed a 
MAPE of 4% in normal walking and 11% in running 
when comparing the GGIR algorithm to visual step count 
[12], which is much lower than our study shows. How-
ever, the participants are not the same where one could 
imagine that the cardiac patients take smaller and slower 
steps compared with healthy adults. The periodicity con-
straint regarding time intervals between peaks to iden-
tify bouts of steps is set to a time threshold to eliminate 
false steps. This time threshold is set in relation to steps 
while walking [20]. Therefore, we suggest that the thresh-
old is changed to include peaks closer together to capture 
higher intensity activities such as running. If the time 
threshold is expanded, it might lead to more false steps 
recorded, but the similarity and continuity constraints 
are in place as well to help address and remove false steps 
withing the threshold of the periodicity constrain which 
means that this should not be a problem.

Strengths and limitations
To our knowledge, no other study has evaluated open-
source algorithms for counting steps in free-living over 
such an extended number of days. Another strength in 
this study is the number of participants covering a large 
span of activity levels. Because the Yamax pedometer is 
rather large, the participants were instructed to take it off 
during the night, which they did not do with the accel-
erometers. This means that if the participants went up 
during the night to for example drink water or go to the 
bathroom, those steps were not recorded by the pedom-
eter. When running the algorithms on the accelerometer 
data, it is hard to remove a specific number of hours to 
compensate for this difference. Consequently, steps taken 
during the night, for example going to the bathroom or 
kitchen, were not registered by the pedometer. There is 
no golden standard method for counting steps in free-
living over an extended amount of time, but the Yamax 
pedometer is often used in research and was therefore 
chosen as the reference method in this study. Because of 
this, we can only say how the algorithms in question per-
form in relation to Yamax as concurrent validity.

Conclusion
This study shows that the GGIR open-source algorithm 
captures steps fairly well in a low-medium active group 
when compared with the Yamax pedometer but does not 
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show satisfactory results on higher activity levels, which 
means that the algorithm must be modified before imple-
mented in a larger variation of populations. The ALn 
algorithm measures steps close to the Yamax pedometer 
in free-living and is therefore a suitable alternative for 
measuring steps in free-living before a valid open-source 
algorithm is available.

Methods
Study design
The study is part of the methodological project Meas-
uring Energy expenditure and Diary intake at different 
Activity Levels (MEDAL) and evaluated the accuracy 
of one open-source and two closed-source algorithms 
to determine steps from accelerometer data collected 
at the right hip during free-living for two weeks. The 
Axivity AX3 accelerometer (Axivity Ltd., Newcas-
tle upon Tyne, UK) with a sampling rate of 100  Hz 
and range of 8  g and the Yamax SW-200 Digi-Walker 
Pedometer (Yamax, Bridgnorth, UK) were used in this 
study. The Yamax SW-200 has demonstrated good 
accuracy when measuring steps in free-living [22] and 
was used as reference. The number of steps from the 
pedometer was logged by the participants for each 
day in an activity diary. The participants could also 
write down if they for some reason removed the moni-
tors and what type of physical activity they performed 
during the day and for how long. The pedometer was 
taken off during the night, but the accelerometer was 
worn for 24 h.

Participant characteristics
Participants between 18–40  years old were recruited 
by distributing leaflets at Gothenburg university, from 
Facebook online advertisement and from local run-
ning sports clubs. Data was collected from 46 partici-
pants including 25 females and 21 males. The MEDAL 
project targeted individuals with a large variation in 
physical activity and recruited participants into a low-
moderate active group (< 150  min/week of vigorous 
physical activity) and high active group (> 300  min/
week of vigorous physical activity). Further, individu-
als with mainly non-ambulatory activities not including 
steps, such as cycling, swimming or strength training, 
were excluded. This means that the high active partici-
pants in the study mainly consisted of runners but also 
some football players. This study has been approved by 
the Swedish Ethical Review Authority (2019–05,316, 
2020–00,010) and has been performed in accordance 
with the Declaration of Helsinki. The participants pro-
vided informed consent to participation. One male and 
one female in the low-medium active group chose to 

withdraw from participation after the first week and 
the first day, respectively.

Algorithms
An open-source algorithm and two closed-source algo-
rithms was used to calculate steps from the accelerom-
eters. The open-source algorithm is based on the peak 
detection method, which seems to be the most accurate 
way to measure steps when compared with other com-
monly used methods [13]. This peak detection algorithm 
is a part of the GGIR package [19] and the detailed infor-
mation on how to run the algorithm can be found [18]. 
When comparing with other open-source algorithms, 
there are several reasons why choosing this algorithm:

• GGIR is a well-known package when it comes pro-
cessing accelerometer data, which means that many 
researchers use it
• The algorithm is based on a peak detection method 
and addresses the problem with detecting false steps 
by adding constraints: Periodicity, similarity, and 
continuity
• The algorithm is designed to work on different 
locations on the body and has been tested in labo-
ratory and semi-free-living setting in several studies 
[12, 20, 21]
• This algorithm provides better step count accuracy 
and fewer false steps when compared with a normal 
peak detection method [20]
• It has been tested on patients with cardiovascular 
disease as well as healthy participants [12, 20]
• It is free, easily accessible, and ready to be used with 
minimal programing knowledge

Accelerometer data were also processed in the AL soft-
ware (ActiGraph LCC, Pensacola, FL, USA) with the nor-
mal filter (ALn) and the low frequency extension filter 
(ALlfe) [8].

Statistical analysis
The data for each participant consisted of four measures 
of number of steps from each day. One from the Yamax 
pedometer and one for each of the algorithms used to 
calculate steps from the accelerometer. Days which had 
missing data from at least one of the algorithms were 
removed from analysis. This resulted in 28 days or 4% of 
the data removed. Two outlier days from the same partic-
ipant were identified as technical error based on the large 
difference (> 45,000 steps) and removed from analysis. 
The statistical evaluation included Pearson correlation, 
mean (sd) difference accompanied with paired t-tests 
to determine measurement bias, mean absolute percent 
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error (MAPE) for the absolute size of error, and Bland–
Altman plots for visualization of different components of 
measurement errors, i.e. systematic error (differential or 
non-differential) and random error (individual variation).
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