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Abstract

Background Infectious diseases not only cause severe health problems but also burden the healthcare system.
Therefore, the effective treatment of those diseases is crucial. Both conventional approaches, such as antimicro-

bial agents, and novel approaches, like antimicrobial peptides (AMPs), are used to treat infections. However, due

to the drawbacks of current approaches, new solutions are still being investigated. One recent approach is the use

of AMPs and antimicrobial agents in combination, but determining synergism is with a huge variety of AMPs time-
consuming and requires multiple experimental studies. Machine learning (ML) algorithms are widely used to predict
biological outcomes, particularly in the field of AMPs, but no previous research reported on predicting the synergistic
effects of AMPs and antimicrobial agents.

Results Several supervised ML models were implemented to accurately predict the synergistic effect of AMPs

and antimicrobial agents. The results demonstrated that the hyperparameter-optimized Light Gradient Boosted
Machine Classifier (0LGBMC) yielded the best test accuracy of 76.92% for predicting the synergistic effect. Besides,
the feature importance analysis reveals that the target microbial species, the minimum inhibitory concentrations
(MICs) of the AMP and the antimicrobial agents, and the used antimicrobial agent were the most important features
for the prediction of synergistic effect, which aligns with recent experimental studies in the literature.

Conclusion This study reveals that ML algorithms can predict the synergistic activity of two different antimicro-
bial agents without the need for complex and time-consuming experimental procedures. The implications sup-
port that the ML models may not only reduce the experimental cost but also provide validation of experimental
procedures.

Keywords Antimicrobial peptides, Antimicrobial agents, Synergistic effect, Fractional inhibitory concentration,
Machine learning, Artificial intelligence

Background

One of the most serious disease groups that can arise
with acute or prolonged complications and pose a severe
threat to human life is infectious diseases [1]. Infectious
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pose formidable treatment challenges [2]. Additionally,
the spectrum of infectious diseases extends beyond com-
munity-acquired to include hospital-acquired infections,
many of which are particularly challenging to treat. The
presence of resistant strains of microorganisms con-
tributes significantly to the difficulty of managing such
infections, ultimately resulting in considerable annual
mortality [3]. In the context of microbial infections, the
transition of microorganisms from planktonic forms
to biofilms represents a critical shift that significantly
impacts the effectiveness of antimicrobial treatments
[4]. While planktonic forms serve as the starting point
for evaluating antimicrobial activity and interactions [5],
biofilms present a more complex and resilient state that
is highly relevant to the challenges encountered in clini-
cal settings [6]. Understanding the interplay between the
planktonic and biofilm states is essential for develop-
ing comprehensive treatment strategies that address the
complexities of microbial infections in real-life scenarios.
The most traditional and widely used approaches for the
treatment and/or prevention of infections involve the
use of antimicrobial agents [7]. However, when these
agents are applied in suboptimal concentrations, they can
increase the likelihood of drug-resistant microorganisms
emerging [8]. This can lead to future infections that are
more challenging to eradicate due to the development of
resistance. Consequently, the application of antimicro-
bial agents alone has limited effectiveness in both treat-
ing and preventing infections [9]. In modern practice,
novel antimicrobial agents are frequently employed in
conjunction with conventional approaches for the treat-
ment and/or prevention of infections. One such category
of agents is antimicrobial peptides (AMPs), a subset of
host defense peptides (HDPs). HDPs can demonstrate a
wide range of actions, and the majority of these actions
provide direct effects, such as antimicrobial activity, or
indirect effects, such as immunomodulatory/anti-inflam-
matory defense against pathogens [10]. AMPs can engage
with microbial membranes non-specifically due to their
amphiphilic nature and positive charge, and AMPs have
a low potential to induce drug resistance [11]. Nonethe-
less, AMPs also have some disadvantages. Maintaining
peptide activity and stability under physiological condi-
tions is a critical need for optimum efficacy. The stability
is determined by their susceptibility to enzyme degrada-
tion and inhibition by proteins, salts, and ions found in
the environment. In addition, pathogens may protect
themselves from AMPs by producing peptide-degrading
enzymes [12].

Both conventional and novel approaches may be
found to be insufficient in the treatment and/or pre-
vention of infections [13, 14]. Different approaches
are currently in progress to increase antimicrobial
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effectiveness, and one method is to use two different
antimicrobial agents in combination [15]. Combining
antimicrobial agents may allow the targeting of various
microorganisms, improving treatment and/or preven-
tion efficacy, reducing the effective concentration of
antimicrobial agents, and overall reducing the treat-
ment cost [16]. The evaluation of antimicrobial inter-
actions often involves experimental procedures such
as the checkerboard assay, which enables the testing
of multiple concentrations of each compound to assess
their combined effects [17]. It is important to note that
while the checkerboard assay serves as the experimen-
tal platform for assessing antimicrobial interactions,
the FIC index itself is not a direct experimental test
but rather a quantitative measure derived from the
experimental data [18]. As such, the FIC index plays
a crucial role in categorizing the combined effects of
antimicrobial agents, offering valuable insights into
their synergistic potential. Desired concentrations for
the synergistic effect of two different antimicrobial
agents may be found as a result of the series of experi-
ments. Still, the experiments are time-consuming, and
the costs are undeniable as they will consume a lot of
material and resources. On the other hand, there are
a lot of studies in the literature in which different bio-
logical outcomes are predicted by machine learning
(ML) algorithms by transforming the existing data into
an artificial intelligence (AI) model without the need
for experimental studies [19, 20]. The high accuracy
values of ML in the experimental science area [21] are
also promising for different fields, especially for AMP
studies [22].

The introduction of modern technological advances in
Al has altered the prospects of biomedicine. Al is being
applied to solve complicated problems in this area [23].
ML is a subfield of Al and the goal of ML is to create
algorithms that guide machines on how to access data
and utilize it to learn a given task [24]. ML studies have
many different applications in the field of AMPs and
are frequently used. The findings obtained from stud-
ies encourage the examination of the synergistic effect
of AMPs and antimicrobial agents with ML algorithms.
Although many ML algorithms predict various functions
of AMPs, it was found that there is no ML-based algo-
rithm that predicts the synergistic effects of AMPs and
antimicrobial agents. Considering the lack of literature,
this study aims to predict the synergistic effect of various
antimicrobial agents with different AMPs by predicting
the FIC index with several ML methods, and to the best
of our knowledge, this is the first study in this specific
field. The existence of such a model may save researchers
time, effort, and resources in the laboratory for an appro-
priate combination of antimicrobial agents and AMP.
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Related studies
ML applications are widely used in medicine and bio-
medical fields for the prediction of desired biological
outcomes. For instance, Furxhi et al. [25] presented a
neurotoxicity classification model to predict cell viability.
They developed a model based on a random forest (RF)
algorithm, and the reliability validation test of the mod-
el's performance achieved an accuracy score of 72%. In
another study, Shaban et al. [26] introduced an ML-based
predictive modeling approach to predict the in vitro anti-
biofilm activity of antibiotics. They developed three mod-
els based on logistic regression (LR), decision tree (DT),
and RF algorithms with accuracy scores of 67+6.1%,
73+5.8%, and 74+5%, respectively. Besides using ML
algorithms to predict a biological outcome, Al applica-
tions are also commonly employed in the field of AMPs.
Progress in AMP studies has fueled ongoing efforts to
develop computational approaches for accurate AMP
prediction to significantly reduce the effort and time
required for experimental identification [27]. To date,
various computational methods for the assessment, pre-
diction, and design of new AMPs have been developed.
AVPpred [28], BIPEP [29], AmPEP [30], ClassAMP [31],
and DBAASP [32] are a few examples. Furthermore, com-
putational prediction of the activities of AMPs against
pathogens as well as their structural properties provides
a supportive technique for the time-consuming and
labor-intensive experimental characterization of AMPs
by shortlisting potential AMP candidates for later experi-
mental validation [33]. Plisson et al. [19] constructed ML
algorithms and outlier detection techniques to guarantee
robust predictions for AMP discovery and the design of
new peptides with lower hemolytic activity. They evalu-
ated 14 binary classification algorithms, and their best
model predicted the hemolytic tendency of any peptide
sequence with an accuracy of 95-97%. In another study, Li
et al. [20] sought to identify factors regulating selectivity
by correlating peptide sequence information with bioac-
tivity data using the RF algorithm. Out-of-bag prediction
generated satisfactory predictive models with accuracies
over 0.80. Model interpretation using variable signifi-
cance metrics and partial dependency plots revealed that
the distribution patterns and composition of molecular
charge and solubility-related factors strongly influenced
selectivity. In a different study, Gull et al. [22] developed
AMARP, which is an ML-based model to predict the bio-
logical activity of peptides with an emphasis on antimi-
crobial activity predictions. Their findings demonstrated
that their models developed with the non-linear support
vector machines (SVM) algorithm and the extreme gradi-
ent boost (XGBoost) algorithm separately are capable of
accurately predicting the biological activity of new pep-
tide sequences with an accuracy score of 97%.
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Prediction of various biological outcomes using ML
techniques has lately been a popular bioinformatics
research topic. AMP studies are among the most studied
areas to provide a better understanding of the mecha-
nisms of AMPs as well. Despite numerous AMP proper-
ties and biological outcomes that have been investigated
using various Al techniques, no research has been
reported previously on predicting the synergistic effects
of AMPs and other antimicrobial agents. In light of the
findings, this paper presents a novel technique to accu-
rately predict the interactions between AMPs and antimi-
crobial agents in terms of the FIC index using supervised
ML algorithms for the first time.

Results

Data interpretation

The data related to the AMP features were collected
from the DBAASP [32] database by applying the neces-
sary extraction criteria. For the use of synergistic effects,
information about antimicrobial agents of interest was
obtained from the DrugBank [34] database. Data was
collected to use supervised ML algorithms to predict the
synergistic effects between AMPs and other antimicro-
bial agents. After determining the predictors and out-
come, rows with missing values were removed. In total,
407 rows of data were collected. These observations from
the obtained data were used in the construction, training,
validation, and testing of the ML models.

Among predictors, several antimicrobial agents and
microbial characteristics were based on nominal data.
Table 1 represents the nominal predictors with their
labels and frequencies. Among microbial characteris-
tic predictors, the one with the highest observation of a
microbial species was the P aeruginosa (32.2%). Other
than nominal data, some of the predictors contain
numeric data as well. Table 2 represents the descriptive
statistics of numeric variables. For minimum inhibitory
concentration (MIC), some values were given in uM,
while others were given in pug/mL. Values given as uM
were converted to ug/mL for unit integrity. Furthermore,
the FIC index was determined as the output. Among the
collected FIC data, 199 corresponded to instances of syn-
ergistic effects, while 208 were associated with scenarios
lacking significant interaction. There are 101 unique
values of the FIC index among the 407 observations.
While the minimum FIC value was 0.01, the maximum
was 1.98, and the mean value of the FIC values was 0.63.
Figure 1 presents the FIC index’s data distribution. The
graph indicates that the data distribution of the FIC index
is most concentrated between 0 and 1. Moreover, the dis-
tribution of the data confirms the absence of an antago-
nistic class in our dataset, where antimicrobial agent
combinations exhibit FIC indices exceeding 4.
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Table 1 Nominal predictors, their categories, and labels with the frequencies of unique values (Frequency presents the percentage of
the related label in a total observation of 407)

Category Variables

Labels (Frequency (%))

Antimicro-
bial Agent
Character-
istics

Antimicrobial Agent Name

Antimicrobial Agent Class

Amikacin (2.7), Amoxicillin (1.2), Amphotericin B (1.0), Ampicillin (2.5), Azithromycin (2.5), Bacitracin
(0.2), Cefepime (1.0), Cefotaxime (0.7), Ceftazidime (2.7), Ceftriaxone (1.0), Cephalothin (0.7), Chloram-
phenicol (3.2), Ciprofloxacin (7.6), Clarithromycin (1.5), Clindamycin (1.2), Colistin (0.7), Doripenem (1.0),
Doxycycline (0.7), Erythromycin (7.1), Fluconazole (1.2), Gentamicin (9.8), Imipenem (4.2), Kanamycin
(1.7), Levofloxacin (0.5), Meropenem (3.2), Minocycline (0.7), Novobiocin (1.0), Ofloxacin (1.0), Oxacillin
(1.7), Penicillin (0.5), Piperacillin (1.5), Polymyxin B (8.1), Rifampicin (10.6), Streptomycin (0.7), Tetracycline
(2.9), Tobramycin (1.5), Vancomycin (9.8)

Aminocoumarin (1.0), Aminoglycoside (16.5), Ansamycin (10.6), Azole (1.2), Beta-lactam (21.9), Chloram-
phenicol (3.2), Fluoroguinolone (9.1), Glycopeptide (9.8), Lincosamide (1.2), Macrolide (12.0), Polymyxin
(8.8), Polypeptide (0.2), Tetracycline (4.4)

Mechanism of Action

Antimetabolite (2.0), Cell membrane (11.1), Cell membrane and Nucleic acid (11.3), Cell membrane

and Protein (0.7), Cell wall (25.8), Cell wall and Protein (0.7), Nucleic acid (25.1), Nucleic acid and Anti-
metabolite (0.5), Protein (22.9)

Gram Activity

Microbial
Character-
istics

Microbial Species

Gram-negative (11.3), Gram-positive (14.0), Gram-positive and Gram-negative (74.7)

A.baumannii (7.9), C. albicans (1.2), C. auris (0.5), C. neoformans (0.5), E. faecalis (0.7), E. coli (23.3), K. aero-
genes (0.5), K. pneumoniae (11.5), M. luteus (0.7), M. bovis (0.2), M. smegmatis (0.7), M. tuberculosis (0.2), P
aeruginosa (32.2), S. aureus (15.0), S. epidermidis (4.2), S. pyogenes (0.5)

Microorganism or Gram Class Fungus (0.5), Gram-negative (75.4), Gram-positive (23.6), Gram-positive and Gram-negative (0.5)

Table 2 Descriptive statistics of numeric variables (All variables have a total count of 407, FH indicates the fractional helical content)

Category Variables Unit Unique Mean sD Min Max
AMP Characteristics Length aa. 20 14.39 58 6 37
Molecular Weight g/mol 65 1847.29 61031 1044.23 4003.84
Normalized Hydrophobicity AG 59 06 1.1 -1.86 323
Net Charge N/A 11 5.86 212 1 11
Isoelectric Point pH() 18 1363 0.96 9.93 14
Penetration Depth A 13 16.26 5.04 10 30
Tilt Angle ° 46 85.89 28.86 13 169
Disordered Conformation Propensity FH 58 -0.31 045 -1.46 0.82
Linear Moment kgxm/s 34 032 0.15 0 0.57
Amphiphilicity Index N/A 60 2.14 1.24 0 53
Average Hydrophilicity AG 48 0.03 0.45 -0.98 2.16
Ratio of Hydrophilic Residues/Total N/A 32 40.13 11.46 10 90
MIC of AMP ng/mL 92 34.34 58.17 0.25 512
Antimicrobial Agent Physiological Charge N/A 8 13 214 -2 5
Characteristics LogP N/A 36 121 338 86 4.1
Water Solubility mg/mL 36 5.79 15.54 0.01 923
pKa mol/L 35 748 4.04 242 12.68
Molecular Weight g/mol 37 677.04 360.61 299.35 1449.3
MIC of Antimicrobial Agent ng/mL 167 66.21 161.18 0.001 2048
Outcome FIC Index N/A 101 0.63 047 0.01 1.98

Correlation analysis and feature selection

A correlation matrix is a table that illustrates the cor-
relation coefficients for variables. It is a strong tool for
summarizing large datasets as well as identifying and
visualizing patterns in the data [35]. Coefficients range
between -1 and 1, where -1 represents a negative lin-
ear correlation, 0 represents that there is no linear

correlation, and 1 represents a positive linear correla-
tion. To ascertain how closely related different numeri-
cal predictors are to one another, a correlation matrix
was developed and presented in Fig. 2A. The model was
first built with all the features (Case I). However, sev-
eral features were correlated with each other. Predictors
reported in the literature to have minimal impact on the
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Fig. 1 The data distribution of the FIC index (FICI_num: FIC index
numeric)

synergistic effect or antimicrobial activity were elimi-
nated by considering the correlation matrix results. The
structure of AMPs is related to a large number of hydro-
phobic residues and a net positive charge because of the
presence of numerous cationic residues such as arginine
and lysine, which enable them to fold into amphipathic
forms [36]. AMPs can engage with microbial membranes
non-specifically due to their amphiphilic nature and pos-
itive charge [11]. There were strong correlations between
the amphiphilicity index and normalized hydrophobic-
ity (0.85) and between average hydrophilicity and the
net charge of AMP (0.71). Based on this information, the
amphiphilicity index and average hydrophilicity features
were eliminated because hydrophobicity and net charge
are more important than other predictors. Also, a strong
correlation was observed between the molecular weight
and length of AMP (0.95), as expected. For that reason,
the length of the AMP predictor was eliminated. Fur-
thermore, a high correlation was observed between the
disordered conformation propensity and the normalized
hydrophobicity of AMP (-0.98). However, as mentioned
before, normalized hydrophobicity has a greater impact
on the synergistic effect. That is why the disordered con-
formation propensity feature was also eliminated. In a
study, it was observed that reducing the positive charge
of the antimicrobial agent did not change the antimicro-
bial activity, but decreasing the lipophilicity decreased
the activity [37]. Based on this study, it was concluded

Page 5 of 19

that lipophilicity, that is, the logP value, is more impor-
tant than the charge of the antimicrobial agent in terms of
activity. Therefore, the charge for the antimicrobial agent
has also been eliminated. Moreover, when the charge of
the antimicrobial agent was eliminated, its strong corre-
lation with the pKa value (0.75) was also eliminated. One
of the two features with a correlation coefficient greater
than 0.5 or smaller than -0.5 was removed, and the model
was rebuilt after removing correlated features (Case 2).
Figure 2B represents the correlation matrix after remov-
ing the highly correlated predictors. The graph indicates
that there is no predictor with a high correlation.

Effect of preprocessing

After the obtained observations were evaluated, the
data were preprocessed before proceeding to the model
development stage. Due to the imbalance in observa-
tions among classes, the Synthetic Minority Oversam-
pling Technique (SMOTE) method was used to generate
9 new observations, and the total number of observations
for both groups was equalized to 208. Furthermore, four
different normalization methods were evaluated in the
scope of this study. Their accuracy values were compared
with different ML algorithms, and the most accurate nor-
malization method was implemented in the remaining
phases of the study. Figure 3A represents the accuracy
values of different normalization methods over a vari-
ety of ML algorithms. In order to compare the accuracy
values of different normalization methods, Multilayer
Perceptron Classifiers (MLPC), Random Forest Classi-
fier (RFC), Light Gradient Boosted Machine Classifier
(LGBMC), and optimized LGBMC (oLGBMC) classifiers
were utilized. oLGMBC is a hyperparameter-optimized
version of the LGBMC classifier using the tpot classi-
fier. The accuracy values after the robust normalization
method for the MLPC, oLGBMC, RFC, and LGBMC
classifiers were 73.92%, 75.38%, 72.08%, and 73.93%,
respectively. The accuracy value of the oLGMBC model
before normalization was 70.53%, whereas after normali-
zation this score increased to 75.38%, demonstrating the
impact of the normalization method on the classification
performance of the model. A robust normalization tech-
nique was selected as the best normalization technique
and was adapted before model development. After resca-
ling the numeric predictors, nominal data were converted
to numerical data using the one-hot encoding (OHE)
method. Then, the data number of the different classes
was equalized to 208 with the resampling method. A one-
way ANOVA test was conducted to determine whether
a resampling method has statistical significance on the
model’s performance, and the p-value cutoff was estab-
lished as .005. After ANOVA, p > .995 was obtained,
and it can be concluded that the effect of the resampling
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method on classification performance is not statistically
significant. After preprocessing, all the data is ready to
train the model. A 3-repeated 5-fold cross-validation
method was utilized for the validation of the model. In
this study, the tpot classifier was employed for the opti-
mization of the hyperparameters. For the genetic algo-
rithm-based tpot classifier, the generation size was set to
150, the population size to 100, and the offspring size to
25. Informed searches were conducted with a traditional
cross-validation strategy to determine the best pipeline.
An Intel® CoreTM i9-10940X CPU and 64 GB RAM were
used to develop all supervised ML models. The accuracy
of the oLGMBC model increased from 72.43% to 75.38%
after hyperparameter tuning.

Training results

Seventeen different classifiers were adapted for this
study, and the accuracy scores of the models devel-
oped with these classifiers were evaluated. Figure 3B
represents the graph of the validation accuracy scores
of 17 different classifiers. The classifier with the high-
est accuracy value was the LGBMC, with an average
validation accuracy of 75.75%. The second and third
most accurate models were MLPC and RFC, with aver-
age accuracy scores of 75.25% and 75.00%. The model
with the lowest accuracy was the Gaussian Naive Bayes
(GNB), with a 61.80% accuracy score. Other models
that had lower accuracy values among others were the
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Extra Tree Classifier (ETC) and the Bernoulli Naive
Bayes (BNB), with accuracy values of 63.80% and
65.90%. There was a 13.95% difference between the
accuracy scores of the most accurate model (LGBMC)
and the least accurate model (GNB). Although the
average accuracy values of the 3 most accurate models
were close to each other, the model with the highest
accuracy score was the LGBMC; therefore, the LGBMC
was adapted for the hyperparameter tuning and the
model’s performance evaluation. Table 3 represents
the average performance metrics of the 3-repeated
5-fold cross-validation strategy for different classifi-
ers. LGBMC, the best-performing classifier, had accu-
racy (ACC) and area under the curve (AUC) values for
the training of 99.75% and 1.00, and 75.75% and 0.82
for the validation. Moreover, among all classifiers, the
F1l-score (F1), recall (REC), and precision (PRE) per-
formance metrics had the highest values, reaching
75.30%, 75.65%, and 77.40%, respectively. Other clas-
sifiers with a lower elapsed time (ET) were also pro-
vided, but their classification accuracy remained low;
therefore, they were not adapted for the scope of this
study. Furthermore, it was established that LGBMC'’s
ET was 1.68, which was relatively low in comparison
with the average of other classifiers. After the empiri-
cal accuracy comparison, a statistical test was also
conducted to choose the best classifier. In light of the
findings of the statistical analysis, it was determined

Table 3 Average performance metrics of the 3-repeated 5-fold cross-validation strategy for different classifiers (ACC, F1, REC, and PRE

values are given as percentages (%) and the ET unitis s.)

Classifier Train Validation
ACC AUC ACC AUC F1 REC PRE ET p-value

LR 77.60 0.85 66.60 0.71 66.20 66.55 6740 0.76 803
LDA 80.25 0.88 68.25 0.73 68.00 68.25 69.20 1.56 544
GPC 99.00 1.00 73.95 0.80 73.75 73.90 74.75 3.68 < .005
XGBC 100.00 1.00 72.80 0.81 7240 72.85 74.10 3.95 017
LGBMC 99.75 1.00 75.75 0.82 7530 75.65 7740 1.68 < .005
KNN 81.95 0.90 72.85 0.77 72.50 72.75 74.05 1.05 017
DTC 100.00 1.00 7045 0.70 70.25 7045 70.95 0.69 237
ETC 100.00 1.00 63.80 0.64 63.40 63.80 64.55 0.66 972
GNB 70.20 0.81 61.80 0.71 60.75 61.85 62.75 0.69 > 999
BNB 7145 0.77 65.90 0.70 65.15 65.80 66.35 0.70 .868
SVM 74.65 0.81 68.85 0.72 67.95 68.75 70.35 1.73 447
BC 97.90 1.00 7415 0.80 73.80 74.30 7525 142 < .005
ABC 85.65 0.94 70.15 0.78 69.15 70.20 72.10 3.63 252
HGBC 99.80 1.00 74.70 0.82 7430 74.70 76.20 1349 < .005
RFC 100.00 1.00 75.00 0.82 74.65 74.95 75.95 577 < .005
GBC 96.95 0.99 69.55 0.81 68.90 69.60 70.75 3.39 333
MLPC 97.25 1.00 75.25 0.77 75.00 75.30 76.70 2844 < .005
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that the accuracy value of six different classifiers was
statistically significant (p < .005) when compared
to others. Following the model with the highest clas-
sification performance (LGBMC), classifiers such as
Gaussian Process Classifier (GPC), Bagging classifiers
(BC), Histogram Gradient Boosting Classifier (HGBC),
RFC, and MLPC have also been statistically significant
(p < .005) in terms of their validation accuracy val-
ues. However, the LGBMC architecture led to the best
average validation accuracy among the others.

After the comprehensive comparison of classifiers,
normalization techniques, and feature analysis, an
optimized version of LGBMC (oLGBMC) was deter-
mined for the eventual classifier with robust normali-
zation. Then, the classification models were adopted
using oLGBMC for the rest of this study. In the test
phase, the oLGBMC model achieved 76.92% ACC and
80.71% AUC. Furthermore, F1, REC, and PRE values
were yielded as 78.18%. Figure 4A represents the con-
fusion matrix obtained in the test phase of oLGBMC
(Case 1). There were 55 data points with an FIC index
greater than 0.5 (No Interaction). The model pre-
dicted 43 of them correctly (true negative) and 12 of
them incorrectly (false negative). Also, there were 49
data points with an FIC index less than or equal to 0.5
(Synergism). The model predicted 37 of them correctly
(true positive) and 12 of them incorrectly (false posi-
tive). If expressed as a percentage, the model correctly
predicted 78.2% of the data with no interaction and
correctly predicted 75.5% of the data with synergism.
The receiver operating characteristic (ROC) curve is
a graph that depicts model performance at all classifi-
cation thresholds. This curve depicts two parameters:
True Positive Rate (TPR), and False Positive Rate (FPR).
Moreover, AUC measures the whole two-dimensional
area under the ROC curve, and these values vary from
0 to 1 [38]. The AUC value of the model was 0.807 (see
Fig. 4C for Case I). Figure 4B represents the confusion
matrix obtained by the supervised ML model generated
by eliminating the correlated features (Case 2). The
results indicate that the model prediction performance
for the “No Interaction” group decreased from 78.2%
to 72.7% when compared with the confusion matrix
including all the features, while the prediction accu-
racy for the “Synergism” group increased from 75.5%
to 79.6%. The ROC curve generated after the corre-
lated features were eliminated (Case 2) is presented in
Fig. 4D. The achieved AUC value was 0.811. The results
demonstrated that removing the correlated features for
predicting the FIC index not only increased the AUC
value and the model performance but also significantly
reduced the computational cost compared to the case
where all features were employed to build the model.
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Contribution of features

The effect of the importance of predictors on the perfor-
mance of the model was measured in terms of informa-
tion gain. Feature importance analyses of the models that
were built with all predictors (Case I) and after remov-
ing the correlated features (Case 2) are represented in
Fig. 5A and B. It was concluded that the most important
feature among all features was the microorganism species
in which the synergistic effect of antimicrobial agents
and AMPs was investigated (see Fig. 5A). The second and
third most important features were the MIC values of the
AMPs and antimicrobial agents when used alone. It was
also observed that the least important features were the
isoelectric point (IEP) of the AMP, the charge of the anti-
microbial agent, and the gram class of the pathogen on
which the antimicrobial agent was active. The total fea-
ture importance distribution was found as 50%, 40%, and
10% for AMPs, antimicrobial agents, and common fea-
tures in Case 1, while it was 46%, 42%, and 12%, in Case
2. Especially in Case 2, 7 features were represented for
AMP characteristics, with an average of 6.5% importance
per feature, while this ratio was represented by 4.6% by 9
features of antimicrobial agents. Therefore, it was estab-
lished that the AMP characteristics may be more impor-
tant than the features of the antimicrobial agents in terms
of synergistic effect, according to both cases. Besides, the
MIC value of the AMP was the most weighted feature
overall, according to Case 2 (Fig. 5B). The microorgan-
ism species in which the synergistic effect of antimicro-
bial agents and AMP was studied was the second-most
important feature. These two predictors continue to
domi