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Abstract
Since their inception more than 50 years ago, Brain-Computer Interfaces (BCIs) have held promise to compensate 
for functions lost by people with disabilities through allowing direct communication between the brain and 
external devices. While research throughout the past decades has demonstrated the feasibility of BCI to act as 
a successful assistive technology, the widespread use of BCI outside the lab is still beyond reach. This can be 
attributed to a number of challenges that need to be addressed for BCI to be of practical use including limited 
data availability, limited temporal and spatial resolutions of brain signals recorded non-invasively and inter-
subject variability. In addition, for a very long time, BCI development has been mainly confined to specific simple 
brain patterns, while developing other BCI applications relying on complex brain patterns has been proven 
infeasible. Generative Artificial Intelligence (GAI) has recently emerged as an artificial intelligence domain in which 
trained models can be used to generate new data with properties resembling that of available data. Given the 
enhancements observed in other domains that possess similar challenges to BCI development, GAI has been 
recently employed in a multitude of BCI development applications to generate synthetic brain activity; thereby, 
augmenting the recorded brain activity. Here, a brief review of the recent adoption of GAI techniques to overcome 
the aforementioned BCI challenges is provided demonstrating the enhancements achieved using GAI techniques 
in augmenting limited EEG data, enhancing the spatiotemporal resolution of recorded EEG data, enhancing 
cross-subject performance of BCI systems and implementing end-to-end BCI applications. GAI could represent 
the means by which BCI would be transformed into a prevalent assistive technology, thereby improving the 
quality of life of people with disabilities, and helping in adopting BCI as an emerging human-computer interaction 
technology for general use.
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Background
A Brain-Computer Interface (BCI) is a system that allows 
direct communication between the brain and the exter-
nal environment [1]. BCI is a promising emerging tech-
nology that could help persons with disabilities regain, 
at least partially, their lost abilities. It could be of help 
when the disability is not caused by a brain damage. BCIs 
can be classified into invasive and non-invasive. Invasive 
BCIs have demonstrated success in a multitude of tasks 
given the high spatiotemporal resolution of acquired 
brain activity using these systems, which could discern 
the response of single neurons in the brain [2]. How-
ever, this is associated with the high-risk of perform-
ing a surgery that aims at implanting electrodes in the 
brain, which could be required for some medical condi-
tions. On the other hand, non-invasive BCIs that mainly 
rely on recording Electroencephalogram (EEG) signals 
by wearing a head cap of electrodes on the scalp repre-
sent a safer and a more practical solution [3]. Recent 
advances in BCIs have demonstrated the efficacy of 
translating recorded EEG signals into actions that rep-
resent users’ intentions. Successful examples of BCIs 
include EEG-speller systems [4–7], wheelchair control 
[8, 9], upper- and lower-limb prosthetics control [10–12], 
robot control [13, 14], and brain-controlled games [15]. 
In addition, BCI has also been demonstrated to represent 
a novel human-computer interaction technology that is 
not limited only to people with disabilities [16–18].

Despite the success BCI has demonstrated in tackling 
many challenges faced by people with disabilities, the 
adoption of such a solution as a long-term assistive tech-
nology has been lacking [19]. This can be attributed to a 
number of challenges that hinder the widespread use of 
BCI. First, calibrating BCIs requires recording an exten-
sive amount of EEG data from users. This is needed to 
train the machine learning algorithms that are typically 
used in such a context to recognize the user’s intentions. 
However, recording EEG calibration data for long periods 
of time is inconvenient for users, especially for patients 
with medical or mental conditions. Second, EEG sys-
tems that provide high channel count with high resolu-
tion are typically used in hospitals for clinical purposes 
and of high cost. These systems are not suitable for every-
day use that requires the portability of the EEG recording 
system. Recently, a number of EEG headsets have been 
made commercially available at reasonable prices [20]. 
These headsets overcome the aforementioned limitation 
by providing portable wireless units with sensors that do 
not require the application of a conductive gel. However, 
they mainly offer a limited number of recording chan-
nels at low spatiotemporal resolution. Finally, developing 
universal BCI systems calibrated using data of subjects 
other than the user has proven to be challenging due to 
the inter-subject variability that is typically observed in 

BCI tasks [21]. This requires recording EEG signals from 
each subject to calibrate the BCI system and operate it in 
a subject-independent manner.

Since the inception of BCI, multiple efforts in the com-
munity have been directed towards tackling the afore-
mentioned challenges [22]. Artificial intelligence (AI) 
techniques, and machine learning in particular, have 
represented a core component in any BCI system to 
help in recognizing the user’s target command. Recently, 
advances in the Generative AI (GAI) field have demon-
strated significant success in a multitude of long-stand-
ing tasks that is revolutionizing many aspects of today’s 
life [23]. GAI has been used in generating different types 
of realistic data including text, images, audio and video 
[24]. GAI techniques rely on deep learning models with 
an extremely large number of tunable parameters that are 
trained using large amounts of data.

In this article, the recent adoption of GAI techniques 
in application to non-invasive BCIs is highlighted. First, 
an overview is provided of how GAI techniques are 
employed to generate synthetic data to augment the 
limited amount of EEG data typically recorded in BCI 
applications. Such augmentation enhances the perfor-
mance of machine learning algorithms typically used in 
different BCI applications. Second, a description is pro-
vided of how GAI techniques are used to generate EEG 
signals with high spatiotemporal resolution from EEG 
signals recorded with lower spatiotemporal resolution. 
Third, examples are given for using GAI techniques to 
enhance the cross-subject performance by generating 
subject-invariant features or signals. Finally, using GAI 
techniques in developing end-to-end applications is dem-
onstrated, were GAI techniques are used to transform 
the recorded EEG signals to other forms including audio 
and images.

There are multiple GAI models that have been uti-
lized in the aforementioned four applications of GAI in 
BCI development; however, of particular interest to this 
article are Variational Autoencoders (VAEs), Generative 
Adversarial Networks (GANs), transformers and diffu-
sion models [24, 25]. A VAE consists of two back-to-back 
networks: An encoder network which encodes the input 
data into a latent space of lower dimensions by mapping 
the input data into a latent space distribution, followed by 
a decoder network that maps the latent space back to the 
input data space [26]. Once trained in a regularized man-
ner, the decoder can be used independently to generate 
new data. A GAN, in its most basic form, consists of two 
networks: a generator network followed by a discrimina-
tor network [27]. The generator is trained to synthesize 
outputs that are as similar as possible to the input data. 
On the other hand, the discriminator is trained to dis-
criminate between the input real data and the synthetic 
(fake) data generated by the generator. The inability of the 
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discriminator to differentiate between real and synthe-
sized data indicates the success of the training of the gen-
erator. Once the training converges, the generator can be 
independently used to generate additional data similar in 
nature to the input data. A transformer, similar to VAEs, 
uses the concept of an encoder followed by a decoder. 
However, in addition to using such a general architec-
ture, an attention mechanism is employed in which the 
decoder would be able to focus on relevant components 
of the input data sequence [28]. Transformers are by 
design developed to handle sequential data. Finally, dif-
fusion models attempt in one forward direction (resem-
bling encoders) to add Gaussian noise to the input data 
along a Markov chain, while in the backward direction 
(resembling decoders) attempt using a neural network to 
reverse the process of noise addition to generate a data 
point from the same space of the input data [29].

This article provides an overview of the use of GAI 
techniques to enhance BCI systems. Using GAI in devel-
oping BCI systems represents one step forward towards 
the widespread adoption of BCI as a reliable assistive/ 
human-computer interaction technology.

GAI for data augmentation
GAI techniques have been demonstrated to augment 
limited EEG data recorded for BCI systems calibration by 
generating synthetic EEG data as illustrated in Fig. 1. BCI 
systems rely on different EEG patterns in their opera-
tion. One EEG pattern that has been utilized in multiple 
applications is the P300 pattern [30]. This is a positive 
peak that appears in EEG signals approximately 300ms 
after the presentation of a rare anticipated stimulus. 
Such a stimulus could be auditory or visual. P300-based 
BCI systems typically rely on a machine learning binary 
classifier to discriminate between the P300 pattern and 
background activity (non-P300) [4]. To achieve accept-
able subject-dependent classification accuracy, a large 
number of trials is required from the subject where one 
epoch typically consists of more than 10 trials for a sin-
gle target. As a result, GAI techniques were introduced 

to augment the limited amount of data. Different GAN 
architectures have been utilized in this task including 
Deep Convolutional GAN (DCGAN), Conditional GAN 
(cGAN), Auxiliary Classifier GAN (ACGAN) and Gradi-
ent Penalty-based Wasserstein GANs (WGAN-GP) [31–
34]. These GANs rely on Convolutional Neural Network.

(CNN) architecture for both the Generator and the 
Discriminator, and/or Recurrent Neural Networks 
(RNNs). Synthetic data generated using GANs when 
added to the real recorded data led to an increase in the 
P300 recognition accuracy by 10–18% when either bal-
ancing the two classes of P300 and non-P300 or generat-
ing synthetic data that is at least 4 times the size of the 
real recorded data. In addition, reducing the training 
data size, in terms of the number of targets, by 30% and 
compensating for the dropped data using GANs does not 
significantly impact the accuracy. These results indicate 
that using GAI can reduce the amount of training data 
needed, leading to a shorter calibration time and less 
inconvenience for the users.

Another EEG pattern that has been utilized in a mul-
titude of BCI applications is the Steady-state Visual 
Evoked Potential (SSVEP). This pattern is characterized 
by recording EEG signals with a frequency spectrum 
that resembles the frequency spectrum of a presented 
flickering visual stimulus [35]. In many SSVEP-based 
BCIs, machine learning classifiers are used to discrimi-
nate between the spectral signature of the SSVEPs of 
different flickering frequencies. One use of GAI in this 
context is, similar to that used with P300 patterns, to 
generate synthetic data to increase the size of the train-
ing dataset of the classifiers. Multiple GAI models were 
used in this task including VAE, DCGAN, WGAN and 
StarGAN to generate synthetic data in the time-domain 
as well as in the frequency-domain improving the SSVEP 
recognition accuracy by 2–20% [36–38]. Another use of 
GAI with SSVEP patterns is to generate synthetic data to 
increase the duration of the recorded real data which can 
help in obtaining a better spectrum estimation as well as 
reduce the amount of data to be recorded from the users 

Fig. 1 Using GAI for EEG data augmentation
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for system calibration [39]. A Long Short-term Mem-
ory (LSTM)-based GAN is used along with ACGAN to 
generate signals of longer duration, which increases the 
SSVEP recognition accuracy by ∼  30%.

Motor Imagery (MI) represents one of the main BCI 
paradigms that relies on recognizing spectral patterns 
in the EEG that correspond to imagined movements 
[40]. Event Related Synchronization (ERS) and Event 
Related Desynchronization (ERD) patterns are recog-
nized mainly in signals recorded from electrodes placed 
around the motor cortex brain area in both hemispheres. 
The majority of the literature on using GAI in BCI data 
augmentation is on augmenting MI data. Multiple studies 
considered using different GAI techniques in augmenting 
the time-domain EEG signals using VAE, DCGAN, and 
conditional WGAN (cWGAN) leading to an enhance-
ment in the MI pattern classification accuracy of 1–18% 
depending on the dataset, the GAN architecture and the 
classification model [41–43]. Another approach is to first 
transform the recorded EEG signals into the frequency 
domain using Short-time Fourier Transform (STFT) and 
subsequently represent each trial as an image of the spec-
trum versus time. GAI is then used to generate synthetic 
images of STFTs to augment the recorded data. Using 
this approach, vanilla GAN and DCGAN were examined 
in this task reaching an enhancement in the overall MI 
pattern classification accuracy of 2.5–12% [44, 45].

Finally, it is worth mentioning that GAI has been used 
for BCI data augmentation in other tasks. For instance, 
to augment EEG data in the task of emotion recogni-
tion, the OpenAI Improved-diffusion model has been 
examined [46]. Additionally, multiple GAN approaches 
were examined in the same task including cWGAN and 
ACGAN increasing emotion recognition accuracy by 
1.5–20% [47, 48].

GAI for EEG resolution enhancement
One of the applications in which GAI has demonstrated 
significant improvement in domains such as computer 
vision is generating super-resolution images from lower 

resolution versions [49]. In EEG signals analysis for BCIs, 
GAI has been applied to enhance both the spatial and 
temporal resolutions of the recorded EEG signals as illus-
trated in Fig.  2. First, considering the spatial resolution 
enhancement, recording EEG signals with high spatial 
resolution in terms of the number of electrodes used in 
the headset and the proximity of the electrodes is typi-
cally challenging and requires expensive equipment that 
might not be suitable for practical daily-usage BCI appli-
cations [50]. As a result, a number of studies has explored 
using GAI to enhance the spatial resolution of EEG sig-
nals. This is typically done by estimating the signals from 
electrodes that are not present in the EEG recording 
headset. For instance, multiple studies have employed 
Deep CNNs in this task in which the input is the data 
recorded from a limited number of electrodes and the 
target.

output of the CNN is signals from a larger number 
of electrodes [51–53]. In these studies, the number of 
input electrodes was as low as 4 electrodes only while 
the number of output synthesized electrodes reached 60 
electrodes. In addition, WGAN was also explored in the 
same task where signals from only 25% of the channels 
were used to generate signals from the remaining 75%. 
Surprisingly, this results in a minimal reduction of only 
9% in the accuracy of mental imagery classification when 
comparing the performance achieved using the generated 
data to that achieved using the ground-truth data [54]. 
The generated high spatial-resolution signals demon-
strated strong similarity with the reference signals indi-
cating the efficacy of using GAI in this challenging task.

Another perspective of enhancing EEG spatial resolu-
tion is to map EEG signals to the underlying neural activ-
ity that could be recorded using other invasive neural data 
recording techniques. EEG is considered a low-pass fil-
tered and distorted version of single-neuron activity [55]. 
Using GAI to map EEG to other underlying neural sig-
nals not only could help enhancing the spatial resolution 
of EEG for better BCI performance, it could also help in 
understanding how single neuron activity and local field 

Fig. 2 Using GAI for enhancing EEG spatial and temporal resolutions

 



Page 5 of 10Eldawlatly BMC Biomedical Engineering             (2024) 6:4 

potentials brain dynamics map to EEG. Deep neural net-
works comprised of residual networks (ResNet) and long 
short-term memory (LSTM) were utilized in this task to 
map EEG to mesoscale neural activity, achieving a mean 
correlation of 0.83 comparing the generated signals to the 
ground-truth [56]. Other studies explored using autoen-
coders, vanilla GANs, and conditional GANs to map EEG 
to invasively recorded intracranial EEG [57, 58]. Results 
reported by Abdi-Sargezeh et al. demonstrated the util-
ity of using GANs to detect interictal epileptiform dis-
charges with an accuracy reaching 76%, outperforming 
previous approaches [59].

In addition to enhancing EEG spatial resolution, GAI 
was also employed in enhancing the temporal resolu-
tion of the recorded EEG. This could be used to gener-
ate high temporal resolution EEG signals from lower 
temporal resolution ones. This could alleviate the chal-
lenges associated with developing high temporal resolu-
tion EEG recording devices such as the complexity and 
high cost of developing and operating such devices [60]. 
Vanilla GAN and WGANs were used to double the sam-
pling rate of the recorded EEG leading to an enhance-
ment in the classification accuracy of a MI dataset by∼
4% [43, 61]. Although not being thoroughly examined as 
the enhancement of spatial resolution, enhancing EEG 
temporal resolution using GAI techniques is promising. 
Further advances in this area could help in reducing the 

cost of EEG recording devices by augmenting the capa-
bilities of low temporal-resolution devices.

GAI for cross-subject performance enhancement
Inter-subject variability represents one of the main chal-
lenges hindering the widespread use of BCI. Such signifi-
cant variability requires recording a significant amount 
of training (calibration) data from each BCI user to train 
a subject-dependent model to be used to determine the 
user’s command or intention [21]. For a given target sub-
ject, achieving similar accuracy for that subject using a 
BCI trained using other subjects’ data, as shown in Fig. 3, 
compared to a BCI trained using the target subject’s data 
would imply that the trained BCI can be used without the 
need for any training data from the target subject. This 
could significantly simplify the setup of BCI systems and 
enhance their usability and scalability.

GAI techniques have been explored in the task of gen-
erating subject-independent data that could be used to 
train machine learning classifiers used in BCIs. GAI-
based approaches were used to enhance P300-based BCI 
cross-subject performance, where hybrid CNN-LSTM 
GAN, DCGAN, cDCAGN and WGAN-GP GAN were 
examined in this task by balancing the dataset overcom-
ing the imbalance between P300 and non-P300 samples 
[31, 33, 62]. The hybrid CNN-LSTM GAN showed the 
best performance in this case increasing the cross-subject 

Fig. 3 Using GAI to enhance BCI cross-subject performance
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accuracy by 10%. A similar idea was explored to enhance 
SSVEP-based BCIs in terms of their cross-subject per-
formance. DCGAN, WGAN, ACGAN and VAEs were 
examined in this task resulting in performance improve-
ments in the range of 3–35% [36, 63]. Finally, in MI-based 
BCIs, transformer models were examined with attention 
mechanisms enhancing the cross-subject performance in 
the range of 0.88–2.11% [64]. A CNN-based GAN that 
uses common spatial pattern filtering was also examined 
in this task along with DCGAN and VAE; enhancing the 
overall cross-subject accuracy by 15.85% [65]. Further 
utilization of other GAI techniques could help in identi-
fying subject-independent features that would eliminate 
the need for subject-dependent data recording.

GAI for end-to-end BCI development
The previous sections demonstrated how GAI techniques 
have enhanced already existing BCI paradigms that use 
brain patterns such as P300, SSVEP and MI. However, the 
advances in GAI could be leveraged to design end-to-end 
BCI applications as shown in Fig. 4, not only enhancing 
the training of the BCI systems or enhancing the resolu-
tion of the recorded EEG signals.

One end-to-end BCI application is generating speech 
from recorded EEG signals. This application could be of 
particular interest to subjects with reduced communi-
cation abilities. Generating speech from recorded EEG 
signals have been demonstrated to be an extremely chal-
lenging task given the complexity of human speech and 
the lack of clear understanding of the mechanisms that 
could map EEG signals to speech [66]. However, GAI 
techniques have been shown to provide a framework that 
could succeed in this task. To achieve the objective of 
generating speech from recorded EEG, a number of stud-
ies examined first using GAI to generate heard speech 
from recorded EEG. A dual GAN architecture was used 
in this task achieving a similarity of 78.5% between the 
actual and generated speech for both single words and 
long sentences [67]. A hybrid CNN-RNN along with 

HiFi-GAN was examined in generating spoken as well 
as imagined speech from EEG signals demonstrating a 
strong similarity between the spectrograms of both with 
a root mean square error of 0.19 [68]. Denoising diffusion 
probabilistic models (DDPMs) were also used exceed-
ing the accuracy of other models in generating speech by 
14.5% [69].

The extreme success GAI techniques demonstrated in 
generating realistic images and videos has inspired multi-
ple research groups to explore the use of GAI techniques 
to generate images from EEG signals. Pre-trained stable 
diffusion models, VAEs and GANs were demonstrated to 
generate images from EEG signals [70, 71]. Stable diffu-
sion models were shown to outperform other GAI tech-
niques achieving a similarity of 45.8% between the actual 
and generated images. Another diffusion-based model 
that extracts multi-level semantics from recorded EEG 
signals achieved an accuracy of 85.6% when the generated 
images were evaluated using semantic classifiers [72]. A 
dual autoencoder was also employed in this task that is 
based on a CNN architecture [73]. Using semantic clas-
sifiers, images generated using this approach were clas-
sified with an accuracy of 85% using both inter-subject 
and intra-subject data. Another study demonstrated the 
use of ACGAN with attention modules in the same task 
reaching an accuracy enhancement of 22% compared to 
using an ACGAN architecture without attention [74].

Conclusions and future perspectives
While BCI has traditionally been considered a technol-
ogy that allows people with motor disabilities to interact 
with computers, it is now considered as one emerging 
human-computer interaction (HCI) technology that 
could be used in the future by all users. Adopting BCI as 
a novel HCI technology for general users is expected to 
attract more research efforts in this domain, which will 
have a positive impact on the development of BCI appli-
cation developed as assistive technologies for people with 
disabilities. A glimpse of the increased attention BCI is 

Fig. 4 Using GAI for developing end-to-end BCI applications generating audio, images and video from EEG signals
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now given is manifested in the recent utilization of GAI 
techniques in this domain attempting to overcome chal-
lenges that hinder the smooth operation of current BCIs. 
In this article, four of these challenges were discussed; 
namely, limited data availability, low signal resolution, 
inter-subject variability and developing end-to-end BCI 
applications. Examples of GAI techniques that were 
recently utilized to tackle these challenges are reviewed 
in this article. In all four challenges, GAI techniques 
resulted in a significant enhancement in the performance 
of different BCI applications, which opens the door to 
further development of GAI techniques in this domain.

While GAI has been used, as demonstrated in this 
article, to augment recorded EEG data used in training 
machine learning classifiers in various applications, GAI 
techniques could also be explored in augmenting the 
test data. For instance, in P300 speller applications, the 
flashing of each row and column of characters is typi-
cally repeated for 10 to 15 times, and the corresponding 
recorded training signals are averaged across flashings 
(trials). This is necessary to overcome the low signal-to-
noise ratio encountered in single trials. This process is 
also performed during the online use of the speller sys-
tem, which requires significant amount of time in the 
order of minutes to type a single word [75, 76]. One 
venue in which GAI techniques could be utilized is to 
generate additional trials from a few recorded trials dur-
ing the online use of the system. For instance, signals 
corresponding to only 5 trials could be recorded and 
then use GAI techniques to generate additional trials to 
be averaged with the signals of the recorded trials. This 
could reduce the time needed to type using P300 speller 
systems and hence enhance the information bit rate and 
the overall user experience. Another direction that could 
be pursued, in addition to speech and image synthesis 
discussed in this article, is video synthesis from EEG sig-
nals. The success different GAI techniques demonstrated 
in image synthesis from EEG signals indicates that video 
synthesis could be feasible. This can be further utilized in 
futuristic end-to-end BCI applications that aim at gen-
erating subject-specific creative content such as art or 
music.

The success of GAI techniques in enhancing BCI appli-
cations as shown here encourages further adoption of 
GAI to overcome other challenges associated with BCIs. 
One venue where GAI can be fused in the development 
of BCIs is to use Large Language Models (LLMs) to 
enhance the performance of BCIs used as spellers. LLMs 
have recently been demonstrated to solve many long-
standing problems in natural language understanding 
and processing [77]. LLMs could be utilized for speller 
BCIs by using LLMs to provide word or even sentence 
suggestions based on a few EEG-based character selec-
tions made by a BCI user. While the use of language 

models in character and word predictions has been intro-
duced before to enhance BCIs [78], the use of LLMs with 
BCIs is yet to be fully explored.

Despite the promise GAI holds in developing BCIs, a 
number of challenges need to be alleviated in the near 
future to leverage the full capabilities of GAI. First, GAI 
requires extensive training data to obtain reliable and 
realistic synthetic outputs [79]. While one of the main 
applications of GAI techniques is to augment limited 
data, training GAI models with limited data could result 
in overfitting which limits the ability of GAI techniques 
to generalize. For subject-dependent BCI applications, 
recording extensive data from each subject is challeng-
ing since it requires long-duration recording sessions 
during which subjects would typically have limited abil-
ity to move to avoid EEG motion artifacts [80]. However, 
recording such data might be feasible given the advances 
in consumer-grade EEG devices which target develop-
ing portable EEG recording headsets for daily use. This 
could enable GAI techniques to achieve further improve-
ment in BCI applications performance. Additionally, 
applying GAI techniques to enhance the cross-subject 
performance of BCI applications requires the availability 
of a dataset with a large number of subjects. This dataset 
needs to be of sufficient size to provide GAI techniques 
with enough data to be used to extract subject-inde-
pendent generalized representative features. Currently, 
most datasets used are in the order of tens of subjects. 
A large-scale study that collects data from hundreds (or 
ideally thousands) of subjects could be the key to training 
GAI techniques that overcome inter-subject variability, 
hence allowing BCIs to get closer to widespread adop-
tion as a reliable assistive technology. Second, the con-
vergence and stability of GAI techniques training cannot 
be easily achieved, which typically requires extensive 
hyperparameter tuning [81]. This might not be feasible 
for BCI applications since it would require performing 
hyperparameter tuning for each subject which requires 
significant computational resources. This would further 
complicate the calibration phase of BCIs. Additionally, 
using GAI techniques to generate data for BCI applica-
tions in real-time is another related challenge since GAI 
techniques are characterized by their inherent computa-
tional complexity. Third, GAI techniques have been dem-
onstrated to hallucinate if their function is not controlled 
[82]. While this might not result in severe consequences 
in other domains, GAI hallucinations could represent a 
major problem in the context of BCI development since 
BCIs could be used in critical applications such as con-
trolling the movement of a wheelchair or a robotic arm. 
A hallucinating GAI could lead to a life-threatening situ-
ation in this case. Finally, GAI techniques used in BCI 
development, as demonstrated in this article, are pre-
dominantly GAN-based. The utilization of other GAI 
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techniques is yet to be explored. Tackling the aforemen-
tioned challenges could pave the way for further utiliza-
tion of GAI techniques in BCI development, which could 
transform the field leading to the wide-spread use of 
BCIs.

Finally, while GAI can contribute to revolutionizing 
BCI development as demonstrated in this article, BCI 
could also play a role in developing GAI techniques. For 
decades, the brain has represented an inspiration to the 
development of AI models leading to significant strides 
in the evolution of AI models [83]. However, there is 
a gap between how AI models are trained and operate 
compared to how the brain learns and processes informa-
tion [84, 85]. This gap is argued to be one of the reasons 
AI is still not capable of reaching the general cognitive 
abilities of humans. BCI could bridge this gap by record-
ing human brain activity in different tasks which can be 
then used to train GAI techniques to generate embed-
dings that resemble the brain representation of informa-
tion. Such a brain-in-the-loop approach could provide 
GAI techniques with additional dimensions of informa-
tion representation, which could augment the capabilities 
of GAI techniques. Thus, the benefits of integrating GAI 
and BCI are bi-directional that can lead to significant 
enhancements in both domains in the near future.
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