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Abstract

other works.

Background: Liver cancer is the sixth most common cancer worldwide. It is mostly diagnosed with a computed
tomography scan. Nowadays deep learning methods have been used for the segmentation of the liver and its
tumor from the computed tomography (CT) scan images. This research mainly focused on segmenting liver and
tumor from the abdominal CT scan images using a deep learning method and minimizing the effort and time used
for a liver cancer diagnosis. The algorithm is based on the original UNet architecture. But, here in this paper, the
numbers of filters on each convolutional block were reduced and new batch normalization and a dropout layer
were added after each convolutional block of the contracting path.

Results: Using this algorithm a dice score of 0.96, 0.74, and 0.63 were obtained for liver segmentation, segmentation
of tumors from the liver, and the segmentation of tumor from abdominal CT scan images respectively. The
segmentation results of liver and tumor from the liver showed an improvement of 0.01 and 0.11 respectively from

Conclusion: This work proposed a liver and a tumor segmentation method using a UNet architecture as a baseline.
Modification regarding the number of filters and network layers were done on the original UNet model to reduce the
network complexity and improve segmentation performance. A new class balancing method is also introduced to
minimize the class imbalance problem. Through these, the algorithm attained better segmentation results and showed
good improvement. However, it faced difficulty in segmenting small and irregular tumors.

Keywords: Liver cancer, Segmentation, Deep learning, UNet

Background

Liver cancer is the sixth most common cancer world-
wide. As of the Global Cancer Statistics report, it is the
second and sixth cause of cancer death for men and
women, respectively [1]. According to the WHO data,
the percentage of liver cancer deaths in Ethiopia out of
the total death in 2017 was about 0.16% [2]. In generall,
there are two types of liver cancers, primary and second-
ary. Among primary types of cancers, hepatocellular
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carcinoma (HCC) accounts for 80% of the cases [3].
HCC is the third cause of cancer deaths and results in
the death of around 700,000 people each year worldwide
[4]. The major risk factors associated with primary liver
cancers are cirrhosis resulting from alcohol usage, hepa-
titis B and C viruses, and a fatty liver disease caused by
obesity [5]. Liver cancer can be diagnosed and detected
by using different imaging tests like ultrasound, mag-
netic resonance imaging (MRI), and computed tomog-
raphy (CT). From these, a CT scan is the frequently
used imaging test [6].

A CT scan gives detailed cross-sectional images of the
abdominal region. Most of the time further processing
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of these abdominal CT scan images is required to seg-
ment the liver and its counter tumorous areas from the
rest of the CT image contents.

But still, the intensity similarity between the tumor
and other nearby tissues in the CT images made the seg-
mentation of the tumorous areas too difficult [5]. There-
fore, these images need to be processed and enhanced to
differentiate the cancerous tissue.

In a CT scan, the presence of liver cancer can be iden-
tified by the difference in pixel intensity in comparison
to the surrounding healthy liver, i.e. the tumor area may
be darker (hypodense) or brighter (hyperdense) than the
surrounding healthy liver [7]. The manual segmentation
of CT scan images is laborious and time-consuming for
a clinical setting because of various factors, for instance,
commonly the liver typically stretches over 150 slices in
a CT volume, the shapes of the lesions are indefinite, the
contrast between the lesions and the nearby tissue might
be low, the shape and the size of the liver varies among
patients and the intensity of the liver might be similar to
the other organs [5, 8]. Considering these problems, re-
searchers have designed different computer-aided diag-
nostic systems for the segmentation of liver and tumor
from the abdominal CT scan images.

In earlier days, different traditional techniques were used
to extract tumors from liver images. But these methods
were not fully effective in the extraction of the tumor. Most
of them are manual or semi-automatic and dependent on
edge detectors rather than analyzing the image as a pixel.
After hardware improvement in the 2000s, machine learn-
ing approaches came into a widely applicable system in
image processing tasks like segmentation [9]. A variety of
deep-learning methods have also been developed for auto-
matic or semi-automatic segmentation of liver tumors.
Among those, convolutional neural networks (CNN) are
currently the most widely used method [10]. Researchers
had used CNN and its extensions, fully connected layer and
UNet, for liver and tumor segmentation.

Recent techniques for the segmentation of liver tumors
can be classified into three classes according to the
method that they implemented. These are convolutional
neural networks (CNN), fully convolutional networks
(FCN), and UNet convolutional networks. But CNN is
the baseline for all methods.

The first method is the convolutional neural network
(CNN). In this method, researchers had used pure CNN
architectures for the segmentation of the liver and the
tumor. In 2019, Budak et al. developed two cascaded
encoder-decoder convolutional neural networks for effi-
cient segmentation of liver and tumor. They proposed
the EDCNN algorithm that includes two symmetric en-
coder and decoder parts. Each part consists of ten con-
volutional layers with batch normalization and ReLU
activation followed by a max-pooling layer [11].
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The other method is a fully convolutional network
(FCN). FCN is an extension of CNN that substitutes the
fully connected layer of CNN with a 1x 1 convolution
where the final output layer has a large receptive field
that matches the width and height of the original image,
enabling every pixel to be classified. FCNs have two
parts, downsampling, and upsampling path. In the
downsampling path, there are seven convolutional and
five max-pooling layers that downsized the input image
through convolution and max pooling operations. Re-
searchers had also used this method for liver and tumor
segmentation [12, 13].

The third method is the UNet convolutional neural
network. UNet was designed for biomedical image segmen-
tation by extending the work published in 2014 [14]. It
works with small training samples and gives more accurate
segmentation results. This network consists of a contract-
ing path that extracts semantic or contextual information
from the image and an expansive path which adds location
information for each pixel and answers where each of them
is localized. The two paths are more or less symmetric to
each other, and yields a u-shaped architecture [15]. Re-
searchers had been used this model for tumor segmenta-
tion by modifying and improving the architecture by
increasing the depth of the structure and by adding more
skip connections and dropout layers. And had combined it
with other methods like graph cut and 3D conditional ran-
dom fields for better segmentation results [8, 10, 16].

As of the available literature regarding U-Net, the
maximum dice score obtained for liver and tumor seg-
mentation is 0.9522 and 0.63 respectively. Additionally,
Christ et al. and Chlebus et al. had used 3D post-
processing methods for better segmentation results [8,
16]. But still, the segmentation performance was com-
paratively poor.

In this paper, a deep learning-based segmentation al-
gorithm was employed for liver and tumor segmentation
from abdominal CT scan images. The main contribu-
tions of this work are, first, it applied data augmentation
tasks that solve the limitation of available data in bio-
medical images, second, it highly reduced the time
needed for training by reducing the number of filters in
each convolutional block thereby it reduced the number
of trainable parameters and third it minimized the effect
of class imbalance which presents between the tumor
and the background through discarding slices with no
tumor information from the datasets and used only
slices with full information. These modifications improve
the performance of the algorithm in detecting the tumor
from the CT images. Finally, this work also showed the
direct segmentation of liver tumors from the abdominal
CT scan images without segmenting the liver first. By
this, we were able to show the results of the three seg-
mentation experiments in one paper, unlike others.
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Results
For training, three separate models with similar architec-
tures had been used. The first model was trained using
abdominal CT scan images with liver annotations for
liver segmentation. Then the second model was trained
using liver images with tumor annotations for the seg-
mentation of the tumor from the liver. Finally, the third
model was trained using abdominal CT scan images
with tumor annotations for the segmentation of the
tumor directly from the abdominal CT scan images.
Each network was trained using 2346 images with data
augmentation from scratch. Images were 512 x 512 in di-
mension. Since processing the whole images with these
sizes is difficult due to limited GPU memory, the images
were resized to a dimension of 128 x 128 even if degrad-
ation of image quality and information loss is inevitable.
Weighted dice loss was chosen as a loss function for the
first two networks and showed better performance dur-
ing training. For the last model, which was trained to
segment tumors directly from abdominal CT scan im-
ages, binary cross-entropy was chosen as a loss function
and for all those three models Adam was selected as an
optimizer through experiments. The network’s model
DSC and model loss for liver segmentation, tumor
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segmentation from the liver, and tumor segmentation
from the abdominal CT scan images were plotted
from Figs. 1, 2 and 3.

The first two plots (a and b) in Fig. 1, show the model
DSCs for training and validation data during the training
of the model for liver segmentation. And the third plot
in Fig. 1 shows the model losses for training and valid-
ation data.

And as it can be inferred from the two graphs, the model
has good performance for both training and validation data.
The DSC for both graphs increased highly around the first
100 epochs and its increment became gradual and been
nearly constant. Finally, the DSCs became 09511 and
0.9633 for training and validation data respectively.

As observed from the third graph, the losses for both
data decreased highly up to around the first 100 epochs
and after that, it became nearly constant. The final losses
for training and validation were — 1.7567 and - 2.1753
respectively.

As it can be inferred from the three graphs in Fig. 1,
the model has good performance in segmenting the liver
from the abdominal CT scan images.

As Fig. 2 (a) shows the model DSCs for the training data
increased up to some point and became nearly constant.

model dice_coef

model loss

model validation dice_coef

dice_coef
[ o =] e
~ @ w0 o

o
(=]

0.5 1

T T T T T
50 100 150 200 250
epoch

o4

b)

— ftrain
validation

0.9 1
0.8 -
o
UI
¥ 06 1
-]
0.5 1
04
03
0 50 100 150 200 250
epoch
a) -0.6
-0.8
-1.0
-1.2
]
o -14
-1.6
-1.8
-2.0
0 50 100

Fig. 1 DSC and loss plot (a) and (b) are model DSC for training and validation data respectively and (c) is a model loss
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Fig. 2 DSC and loss plot (a) and (b) are model DSC for training and validation data respectively where (c) is the model loss

This showed the network was good during training. In the
second plot (b), the model DSC for validation data was
also plotted and some fluctuations were observed. At the
last epoch, DSCs of 0.7769 and 0.8375 were obtained for
training and validation data respectively.

In Fig. 2 (c) the model losses were plotted. The losses
for the training and validation data decreased as ex-
pected and became nearly constant. And finally, losses
of —1.6291 and - 2.0278 were obtained for training and
validation data respectively.

As shown in Fig. 3, model DSCs and model losses
were plotted for tumor segmentation from the abdom-
inal CT scan images. The first two plots are model DSCs
for training and validation data. At the last epoch, DSCs
of 0.7734 and 0.8240 were obtained for training and val-
idation data respectively.

And in the third plot Fig. 3, the model losses for the
two data were plotted. Here also some fluctuation in val-
idation losses was observed. But the training loss de-
creased almost constantly. And obtained losses of 0.0093
and 0.001 for training and validation respectively.

Test results for liver segmentation
The performance of the liver segmentation algorithm
was evaluated using different performance metrics and

the result is included in Table 1. The segmentation re-
sult of the algorithm with the respective ground truth
images is included in Fig. 4.

Row 1 shows the result of the model, row 2 shows the
respective masks, row 3 shows overlap images of the re-
sult with a mask, and row 4 shows both results and
mask on the original CT scan image. As shown in Fig. 4
the liver segmentation result is satisfactory and the algo-
rithm could almost segment the liver from the abdom-
inal CT scan images fully. It has an average dice score of
0.96 which is greater than the others by 0.01. But in
some cases, it missed some portion of the liver as it is
shown with cyan and segmented nearby tissues as a liver
as it is shown as magenta in row 3.

Test results for tumor segmentation
The segmentation result of this network on segmenting
liver tumors from the liver and directly from the abdom-
inal CT scan images was evaluated using different per-
formance metrics and the result is included in Table 2.
The segmentation result of the algorithm with the respect-
ive ground truth images is included in Figs. 5 and 6.

Row 1 shows the result of the model, row 2 shows the
respective masks, row 3 shows overlap images of the
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Fig. 3 DSC and loss plot of the model (a) and (b) are model DSC for training and validation data respectively and (c) is a model loss

result with a mask and row 4 shows both results and
mask on the liver.

As shown in Fig. 5, the algorithm has good segmenta-
tion ability on circular tumors and could also detect the
distributed tumors from the same liver slice. It has an
average dice score of 0.74, which is greater than the
others by 0.11. But in some cases, it failed to segment
some tumors as it is seen as cyan and segmented other
tissues as tumor as it is seen as magenta in row 3.

Row 1 shows the result of the model, row 2 shows the
respective masks, row 3 shows overlap images of the re-
sult with a mask and row 4 shows both results and mask
on the abdominal CT image.

As shown in Fig. 6, the tumor segmentation directly
from the abdominal CT scan image showed good per-
formance relative to works done by other researchers. It

Table 1 Test results of others and our work for liver
segmentation

has a relatively similar performance with those works
that segment the tumor with a two-way process. It has
an average dice score of 0.63. But it failed to segment
some tumors as it is seen as cyan in row 3 and it also
segmented other nearby tissues as a tumor as it is shown
with magenta in row 3.

Discussion
In the original UNet paper the batch size of 1 was used
for maximum usage of GPU memory without consider-
ing the time it took for training [15]. As the batch size
decreases the training time will increase and the prob-
ability of using maximum GPU memory increases.
Therefore the selection of batch size needs great care.
Unlike [15], in this work batch size of 8 was used that
compensates both GPU memory problems and training
time after many trials. That means the network was
trained using eight images at a time.

To test the liver segmentation performance of the devel-

Papers Dice score SVD Accuracy  oped network, 392 images were used. And those images
Christ et al. [12] 09430 _ _ were preprocessed using the same preprocessing tech-
Liu et al. [10] 09505 nique that was implemented on the training data. The re-
Budak et al. [15] 09522 B B sult of the network was evaluated using tbe respective

ground truths of the images and the comparison result of
This work(U net) 0.9612 0.0388 0.9931

this algorithm with works of Christ et al. who had used a
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Fig. 4 Liver segmentation results, ground truths, and overlap images

cascaded deep neural network with 3D conditional ran-
dom fields to segment the liver and its lesions [16], Liu
et al. who came up with GIU-Net that combines the im-
proved UNet with the graph cut algorithm for segmenting
liver sequence images [10] and lastly with Budak et al.
who developed two cascaded encoder-decoder convolu-
tional neural networks for the segmentation of liver and
its tumor [11], were also included.

Table 1 shows the result obtained from this work and
other works.

For testing the segmentation ability of the developed
algorithm on segmenting the liver tumor a total of 392
images with their respective ground truths were used.
The tumor was segmented in two ways. The first is the
segmentation of the tumor directly from the abdominal
CT scan image and the other is from the liver after
segmenting it first. The result of the network was evalu-
ated using the respective ground truths of the images

and the comparison result of this algorithm with works
of Chlebus et al. who used UNet by modifying it with
object-based post-processing to segment liver tumor [8],
and Budak et al. who implemented an encoder-decoder
convolutional neural network for liver tumor segmenta-
tion [11], were also included.

Table 2 shows the tumor segmentation result of two
papers and the current work.

This algorithm highly reduces the complexity of the
network by reducing the number of filters in each con-
volutional block. This decreases the time needed to train
the network from a few hours to 40 min. In this thesis,
2346 images with data augmentation were used to train
the network which is very small when it is compared
with other works that had used more than 20,000
images.

And here the class frequency difference between the
liver and the background was minimized through

Table 2 Test results of others and our work for tumor segmentation

Papers Dice score SVD Accuracy
Chlebus et al. [13] 0.58 _ _

Budak et al. [15] 0.63

This work (U net) from liver 0.74 + 0.02 0.26 + 0.02 0.9954
This work (U net) from abdominal CT image 0.63 + 0.02 0.37 + 0.02 0.9950
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Fig. 6 Result of tumor segmentation from abdominal CT images with the respective masks and overlap images
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removing the CT slices with no liver that affects the seg-
mentation performance in addition to introducing a
weight vector to the loss function. The result of this al-
gorithm was compared with other works to show how
this algorithm improves liver segmentation performance.

And the work also shows a new way for liver tumor
segmentation. It can segment the tumor directly from
the abdominal CT scan images, unlike the others which
followed two steps to segment it. In other work, to seg-
ment liver tumors, the liver has to be segmented first
and then the tumor segmentation precedes next to that.

But this work came up with segmenting of the tumor
directly without liver segmentation and by this, a com-
parable segmentation result of 0.63 DSC was obtained.
In addition to this, the tumor segmentation was also
done using the previous way. That means by following a
two-step process like others and obtained a DSC of 0.74
that differs by an average of 0.11 from the previous
works. Chlebus and his colleagues had used the post-
processing method, which includes 3D connected com-
ponents and random forest classifiers. However, the seg-
mentation result obtained from this algorithm is greater
than them by 0.16. This improvement is due to the class
balancing that the work implemented. As discussed
above, the class balancing was done by removing slices
with no tumor. The difference between the numbers of
tumor pixels to background pixels largely affects the seg-
mentation result. Therefore this work tried to decrease
this class imbalance by removing those slices with no
tumor from the whole dataset in addition to the weight
factor added to the loss function and observed a per-
formance improvement. The segmentation result is
compared with other works to show the improvements
in liver tumor segmentation.

General results of the architecture

This segmentation algorithm highly improves the effi-
ciency of liver tumor segmentation. First, it reduces the
complexity of the network by reducing the number of
filters needed on each convolutional block that decreases
the number of trainable parameters. Due to this the time
needed for training the network greatly reduced. The
total time needed to train the network for 250 epochs is
about 40 min on Kaggle kernel. This is a great achieve-
ment in deep learning-based segmentation in which the
time and complexity of the network matter a lot.

And the other burning issue in deep learning-based
segmentation was the absence of enough training sam-
ples to train the network. And this is also solved by the
developed algorithm. It only needs small training sam-
ples and used excessive data augmentation. By this, it
can increase the number of training samples present.
Data augmentation applied affine deformations on those
available images that helped the network to learn

Page 8 of 13

invariance to those deformations hence, deformation is
the most common variation in biomedical images.

And the other important thing that should be consid-
ered during liver tumor segmentation or other biomed-
ical image segmentation is the class imbalance between
the two classes to be segmented. There is a large differ-
ence in size between the tissue to be segmented and the
background. This highly affects the segmentation per-
formance. For example, in Fig. 7 the number of white
pixels to black pixels shows a high difference.

The ratio of white pixels to black pixels can be calcu-
lated using Eq. 1. It is 1: 9 and 1: 85 for liver and tumor
masks respectively. Due to this, the network gets more
black pixels than white pixels and learns from that dur-
ing training. Its probability of learning from white pixels
is very small when it is compared with the black ones.
This results in poor performance of the network.

Number of white pixels

Ratio =

(1)

number of black pixels

On the original UNet paper, the authors included a
weight map that pre-computed from the ground truth
images for balancing the class frequencies. In addition to
this, in this paper, it is reduced using the removal of
slices with no tumor information. During data prepar-
ation, the first step was checking all patients’ data with
tumor from both datasets. Then remove data that is ob-
tained from healthy ones from the dataset and next
search and remove for slices with no tumor. Lastly, the
data with the tumor only was arranged and saved
sequentially.

The network had been trained using those data and
it'’s observed that the network’s performance showed a
great difference. The network performance increased
with 0.01 and 0.11 for liver and tumor respectively.

This work also introduces a new way for tumor seg-
mentation. Before this work, tumor segmentation has
been done from the liver after segmenting it first from
the abdominal CT scan image. The segmentation was a
two-way process. But here liver tumors can be detected
and segmented directly from the abdominal CT scan im-
ages with relatively comparable performance. This de-
creases the time and the effort needed during the
segmentation of the tumor.

Experiments were done to show the effect of filter re-
duction and the application of data augmentation on the
overall model performance.

Table 3 demonstrates the results of the models with
an original and reduced number of filters and their per-
formance before and after applying a data augmentation.

As Table 3 shows, reducing the filter size didn’t reduce
the model’s performance, rather it shows small improve-
ments in both liver and tumor segmentation, and the
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a)

b)

Fig. 7 The class imbalance between liver and tumor with the background. (a) shows the liver and (b) shows the tumor

training time is also reduced by about 1/3. The model
performance is checked with and without data augmen-
tation. Without data augmentation, it shows overfitting.
It was good during the training but it is worse at the
testing time especially for tumor segmentation since
most of the tumors are very small.

Even if the algorithm showed good improvement on
liver and tumor segmentation, it still fails to segment
correctly in some slices. In liver segmentation, the algo-
rithm almost segments the liver correctly but it fails in
some slices in which the full liver is not captured and in
slices in which the liver is covered by other overlapping
organs and seems to be divided into parts. Regarding
tumor segmentation, the algorithm mostly fails to seg-
ment tumors that are small and irregular in shape.

Conclusion

This paper focused on segmenting the liver and its
tumor using a deep learning method. The method con-
sists of three modified UNet models for the liver, the
tumor from the liver, and the tumor from abdominal CT
scan image segmentation. Using this algorithm a DSC of
0.96 and 0.74 for the segmentation of liver and tumor
from the liver respectively were attained which showed
an improvement of around 0.01 and 0.11 respectively.
This improvement was obtained due to the reduction of
the class imbalance that occurred in the data manually
by removing unnecessary images and the selection of
good hyperparameters through many trials.

Method
Description of materials
Datasets
Images that were used to train and test liver and liver
cancer segmentation algorithm developed by this paper
were taken from two publicly available datasets, 3Dir-
cadb01 (3D Image Reconstruction for Comparison of
Algorithm Database) [17] and LITS (Liver Tumor Seg-
mentation) Challenge [18]. The 3DIRCADb dataset is
challenging to utilize since there is a high variety of data
and the liver and tumor complexity [11]. Detailed infor-
mation about the two segmentation datasets is included
in Table 4.

Table 4 shows detailed information about the two
datasets.

Data preparation

Images taken from the two datasets should be prepared
to use them for training and testing the developed algo-
rithm. The 3D-ircadb01 dataset contains up to seven
folders under each patient’s data for the tumor masks
depending on the anatomical position of the tumor on
the liver. Therefore these tumor masks from those dif-
ferent folders should be added and put into one folder
since the main intention is on the segmentation result
not on the tumor’s anatomical position.

And the images in the LITS datasets are three-
dimensional and there is no separate mask for the liver
and its tumor. Instead, they are found on the same mask
image under the segmentation folder in the dataset.

Table 3 Experimental results for liver and tumor segmentation with filter size reduction and application of data augmentation

Liver Tumor from liver Tumor from abdominal CT image
(In DSCQ) (In DSC) (In DSQ)

UNet (with original filter size) 0.9529 0.7384 0.6743

Modified UNet without data augmentation 0.9027 0.0992 0.0287

Modified UNet with data augmentation. 0.9612 0.74 063
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Table 4 Liver and tumor segmentation data sets
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Dataset Number of patients Image size Pixel width and height Slice thickness Pixel spacing Slice number Tumor data out
of 100%

3D-IRCADbOT 20 512x512  0.56-0.87 mm 1-5mm 055-095mm  74-260 75%

LITS 131 512x512 - 0.7-5mm - - 63%

Since the developed algorithm is two dimensional (2D),
the data should be converted into 2D. A separate mask
for the liver and tumor must also be prepared. This data
preparation was done using an Image] tool. From both
datasets, the patient data with no liver and tumor masks
are discarded. And from each patient data, images or
slices which are taken at the starting and ending of scan-
ning, with no liver information were also discarded for
reducing the class imbalance present between the back-
ground and foreground.

The number of images used for training and testing is
included in Table 5.

Image preprocessing

The images were 512 x512 in dimension originally.
Using those images as it was is difficult due to limited
GPU memory. Therefore, all images were resized with a
factor of 0.25. And the images were also normalized to
have a value between 0 and 1.

Computing platforms

The acquired images from both publicly available data-
sets were processed and analyzed on Kaggle. Kaggle is
an online community of data scientists, owned by Goo-
gle that provides cloud infrastructures such as a built-in
Python Jupyter notebook, graphical processing unit
(GPU), tensor processing unit (TPU), and data storage
platform for facilitating the works of data scientists.

The segmentation algorithm

The algorithm is based on the UNet architecture devel-
oped by Ronneberger et al. in 2015. This algorithm in-
cludes two 2D UNet architectures, for the liver and its
tumor. These architectures were designed to segment
liver and tumors from the abdominal CT scan images.

Network architecture

For both liver and tumor segmentation, the same U
shaped network architecture is used. It consists of a con-
tracting path, an expansive path, and a bottleneck part like
the original UNet. But, here in this paper, after each con-
volutional layer, batch normalization is added in all three

Table 5 Training and testing images

Training images
2346 + Data augmentation 392

Testing images

parts of the network and a 0.5 dropout layer is added after
each convolutional block of the contracting path.

The batch normalization is important for normalizing
the outputs of the convolutional layers to have a mean of
zero and a standard deviation of one and the dropout layer
randomly deactivated some neurons in the hidden layer to
prevent overfitting of the network. And the other modifi-
cation is done on the number of filters of each convolu-
tional block. In the first block, there are 16 filters and it
will be doubled in the consecutive three blocks and be-
come 128 at the last convolutional block. The details of
the modified network architecture are indicated in Fig. 8.

Contracting or downsampling path The contracting
path also called encoder is composed of 4 blocks. Each
block is composed of:

e 3 x 3 Convolution Layer with ReLU activation
function and batch normalization

e 3 x 3 Convolution Layer with ReLU activation
function and batch normalization

e 2x2 Max Pooling

e Drop out layer (0.5)

The purpose of this contracting path is to capture the
context or semantics of the input image to be able to do
segmentation. It extracts features that contain informa-
tion about what is in an image using convolutional and
pooling layers. During this process, the size of the fea-
ture map gets reduced and the deep or high-level fea-
tures of the image will be obtained but the network
loses the spatial or location information in which those
features are found.

Bottleneck This part of the network is between the con-
tracting and expanding paths. The bottleneck is built
from two convolutional layers with batch normalization.

Expanding or upsampling path The expanding path
also called decoder is composed of 4 blocks. Each of
these blocks is composed of

e Up convolution or Deconvolution layer with stride 2.
e Concatenation with the corresponding cropped
feature map from the contracting path.
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function and batch normalization).

The purpose of this expanding path is to recover the
feature map size and to add spatial information for the
segmentation image, for which it uses up-convolution
layers.

The course contextual information from the contract-
ing path will be transferred to the upsampling path
through skip connections.

Skip connections There could be a loss of low-level in-
formation during the decoding process. To recover this
information lost and to let the decoder access the low-
level features produced by the encoder layers skip con-
nections are used. Intermediate outputs of the encoder
are concatenated with the inputs to the intermediate
layers of the decoder at appropriate positions. This en-
ables precise localization combined with contextual in-
formation from the contracting path.

Details of the network architecture and layers found in
each part of the model are shown in Fig. 8.

Training

The network architecture is based on the original UNet
architecture. However, additional batch normalization and
dropout layers are included in the network architecture of
this work, and the number of filters in each convolutional
block is also reduced. Therefore, training the network

from scratch is needed. The input images and their corre-
sponding segmentation masks are used to train the net-
work. 2346 images from the two datasets with data
augmentation were used. During training, many experi-
ments were done by tuning the hyperparameters used in
the network. Learning rate, batch size, number of epochs,
and number of filters, validation split, dropout value,
optimizer, loss function, and activation function had been
checked for different values and assignments. After many
trial and error a batch size of 8, epochs of 250, validation
split of 0.30, and a dropout of 0.5 had been used.

Optimizer Adam Optimizer is an extension for the sto-
chastic gradient descent (SGD) and RMSprops (root
mean squared). It is a method for efficient stochastic
optimization that only requires first-order gradients with
little memory requirements. It finds individual adaptive
learning rates for each parameter in the network. Its
name is derived from adaptive moment estimation [19].
In this work, Adam optimizer with a learning rate of
0.0001 had been used.

Loss function Weighted dice loss and binary cross-
entropy were used as loss functions to measure the vari-
ations of the predicted values from the actual values dur-
ing the training of the network. The equations used for
calculating weighted dice loss and binary cross-entropy
are given in Egs. 2 and 3 respectively.
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Where TP is true positive, EN is a false negative, FP is
false positive and W is a weight factor that is introduced
to balance the class frequency difference between the
foreground and the background.

-1 N
BCE = WZJ’:I y;. log  log(p(y;))
+(1-y;). log log(1-p(y;)) (3)

Where BCE is binary cross-entropy, N is the total
number of pixels, y; is the predicted label for each pixel
i, and p(y,) is the predicted probability of each pixel be-
ing foreground or background.

Data augmentation Data augmentation is important to
train the network effectively when there are small train-
ing samples available. In biomedical image segmentation
tasks, there are often very little training data available.
Therefore excessive data augmentation by applying af-
fine deformations to the available training images is
used. This allows the network to learn invariance to
such deformations.

Data augmentation is specifically essential for biomed-
ical image segmentation in which deformation is the
basic difference in tissues. Less number of training pairs
results in overfitting [15].

In the proposed work, in place or on the fly data aug-
mentation technique had been used [20]. This type of
augmentation artificially increases the size of the dataset
by applying real-time data augmentation. In each epoch
new randomly augmented data were given to the model.
This increases the amount of data and the
generalizability of the model.

Performance metrics

For evaluating the performance of the segmentation
method, the binary mask of the segmentation result is
compared to the ground truth mask and their similarity
is estimated. Different performance metrics like DSC,
Jaccard similarity coefficient (JSC), accuracy, and sym-
metric volume difference (SVD) are used.

Dice similarity coefficient (DSC)

It measures the overlap between two binary masks. It is
the size of the overlap of the two segmentations divided
by the total size of the two objects. It ranges from 0 (no
overlap) to 1 (perfect overlap). It represents the overall
performance of the segmentation [21, 22]. It is calcu-
lated using Eq. 4.

Page 12 of 13

2TP
DSC= (o 4
SC (ZTP +FP+ FN) )

Where TP is a true positive, FN is a false negative, and
FP is a false positive.

Jaccard similarity coefficient (JSC)

It measures the similarity between the segmented image
and the binary mask. It is the ratio of the intersection of
two binary masks to their union [22]. It is given by Eq. 5.

TP
J5C= (TP+FP+FN> Q

Where TP is a true positive, EN is a false negative, and
FP is a false positive.

Accuracy

Accuracy represents the ratio of correctly segmented sam-
ples to the total samples. It is approximately one for good
segmentation results. It is calculated using Eq. 6 [12].

TP + TN
TP+ TN + FP + FN

Accuracy = (6)
Where TP is a true positive, TN is a true negative, FN
is a false negative, and FP is a false positive.

Symmetric volume difference

SVD is a measure of difference that exists between the
segmented images with the ground truth. For good seg-
mentation results, SVD approximates to zero. It is given
by Eq. 7.

SVD = (1-DSC) 7)

Where DSC is the Dice similarity coefficient.

e True Positive (TP): denotes all pixels belongs to the
foreground and classified as foreground.

e True Negative (TN): denotes all pixels belongs to
the background and are classified as background.

e False Negative (FN): denotes foreground pixels that
are incorrectly classified as background pixels by the
classifier.

e False Positive (FP): denotes background pixels that
are incorrectly classified as foreground pixels by the
classifier.
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