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Abstract 

Background:  Gluten, a food allergen, is available in foods derived from wheat, rye and barley. It damages the small 
intestine and causes celiac disease. Herein, we designed a rapid immunochromatographic lateral flow test assay for 
detecting the gluten contents of raw materials. In this rapid test, the presence of gluten was screened through the 
capturing of gliadin (a toxic component of gluten) by two identical gliadin monoclonal antibodies. One of the anti‑
bodies was immobilized on the membrane in the test zone as a capture reagent. The other antibody was labeled with 
gold nanoparticles (AuNPs) as a detector reagent.

Results:  Gold nanoparticles with a size of about 20 nm were synthesized and conjugated to the gliadin monoclonal 
antibodies. The detection limit of the experimental assay was 20 ppm and positive results were visualized after 15 min 
using only 40 μL of the extracted sample for each test. Analysis of different flour samples identified the best sensitivity 
and specificity of the lateral flow test strip (LFTS).

Conclusion:  The experimental LFTS is an easy-to-use and rapid method for the screening of gluten level in raw mate‑
rials. The LFTS may be employed to ensure the safety of foods.
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Introduction
Food allergens can trigger immune responses and result 
in adverse clinical implications. They are considered a 
serious problem in contemporary healthcare [1]. Glia-
din is a glycoprotein derived from gluten that is found 
in foods derived from wheat [2], rye [3], and barley [4]. 

Gliadin is not fully digested in the gastrointestinal tract. 
It damages the small intestine and causes celiac disease 
[5]. The major toxic component of gliadin is 33-mer pep-
tide from alpha 2-gliadin that contains proline and glu-
tamine amino acids residues. This peptide has frequently 
been described as the most important celiac disease-
immunogenic sequence in gluten. The most commonly 
available therapy for celiac disease is a severe life-long 
gluten-free diet and/or the consumption of foods with a 
"gluten-free" label. Based on the adopted Codex stand-
ard 118-1979 by the U.S. Food and Drug Administra-
tion (FR Doc. 2013-18813) and European Commission 
Regulation (EC 41/2009), the level of gluten in gluten-
free foodstuffs should not exceed 20 parts per million 
(ppm). Accordingly, monitoring of the gluten level in the 
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labeled products is important to ensure the safety of con-
sumer food products. Many analytical methods including 
polymerase chain reaction (PCR) [6], high-performance 
liquid chromatography (HPLC ) [7], liquid chromatogra-
phy-mass spectroscopy/mass spectroscopy (LC-MS/MS 
) [8], microarrays [9], immunosensors [10], Aptasensor 
[11], matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF MS) [12] and 
near-infrared (NIR) spectroscopy [13] have been used 
experimentally for the analysis of the gluten level in non-
processed and processed foods. Enzyme-linked immu-
nosorbent assays (ELISA) and the lateral-flow assays are 
two common methods used for quantitative and semi-
quantitative or qualitative analysis of the gluten contents 
in foods [14–17]. The main advantages of lateral flow 
immunoassay-based methods over very accurate meth-
ods like ELISA, PCR, MALDI-TOF MS and HPLC for 
detecting gluten in foods is their short detection time, 
ease of use and the capability of on-site detection with-
out the need for expensive equipment and specialized 
personnel [18–21]. By applying knowledge acquired from 
chemistry and nanotechnology, new approaches in devel-
oping a fast, cost-effective and reliable method for gluten 
detection have emerged. In particular, recent interests in 
gluten detection have been focused on the use of inor-
ganic nanoparticles with adjustable optical properties.

Three types of labels are employed in immunochroma-
tographic systems. These labels included colored nano-
particles (e.g. gold, carbon and selenium nanoparticles), 
magnetic nanoparticles (e.g. silver nanoparticles) and 
luminescent (e.g. up-conversion phosphors and quan-
tum dots). Among these labels, colloidal gold nanopar-
ticles (AuNPs) have acceptable biocompatibility. They 
possess unique optical properties in the presence of dif-
ferent analytes, along with ease of production, conjuga-
tion and detection. Hence, AuNPs have been extensively 
investigated as potential labels in lateral flow immunoas-
says [21–28]. Lateral flow immunoassay (LFIA) is based 
on a paper-based biosensor and is considered as a point-
of-care (POC) approach [20, 29]. This immunoassay is 
also known as immunochromatographic (lateral flow) 
assay, test strip, rapid diagnostic test, immune-gold col-
loid immunoassay (IG) or fluorescent quenching LFA 
(FQLFA) strips [30–33]. To date, lateral flow immunoas-
say has been applied in different fields such as food safety, 
clinical agriculture and environmental monitoring. Sev-
eral LFIA kits for gluten detection are commercially 
available. They are marketed as EZ gluten®, Gluten Rapid 
Kit, reveal 3-D for Gluten, AgraStrip®LFD Gluten G12 
and AgraStrip®LFD Gluten [34–36].

Herein, we developed a sensitive and specific sandwich-
like lateral flow test strip for gluten detection in non-pro-
cessed foods, with a detection limit of 20 ppm (the Codex 

standard). Apart from the availability of commercial glu-
ten detection kits with lower detection limits and more 
accurate methods such as ELISA, our goal is to design 
the simplest gluten detection kit for accurate detection of 
20 ppm of gluten in food substances. This test generates 
results in just 15 minutes without the need for additional 
equipment. The test may be used by unskilled personnel 
of all ages and in remote areas that do not have access to 
advanced medical laboratories. The new test strip utilized 
the Gliadin Monoclonal Antibody that specifically targets 
the immune-dominant sequence PQPQLPY in the glia-
din peptide. The augmented specificity of the novel lat-
eral flow test strip was attributed to its higher affinity for 
the antigen. The lateral flow test strip (LFTS) was shown 
to be a user-friendly method for the rapid detection of 
gluten in a short time. A schematic of the structure and 
function of the LFTS is shown in Fig. 1a. A positive result 
is visualized by the appearance of two lines, the test and 
control lines, on the test strip (Fig. 1b), in the presence of 
20 or more ppm of gluten in a food sample. The presence 
of only the control line on the test strip is indicative of 
a negative result, in the presence of less than 20 ppm of 
gluten in a food sample (Fig. 1c).

Results
Characterization of AuNPs
Gold nanoparticles were synthesized using citrate reduc-
tion in several steps that involved nucleation (reduction 
of HAuCl4 to gold atoms), growth and agglomeration of 
atoms into nanoclusters to approximate 20 nm in diam-
eter (Fig. 2a and b). The size distribution and the average 
diameter of the AuNPs were determined based on the 
field emission scanning electron microscopy (FESEM) 
and ultraviolet-visible (UV-VIS) light spectrophotometry 
(Fig.  2c and d, blue line). The hydrodynamic diameters 
of the AuNPs were measured using dynamic light scat-
tering (Fig.  2e). Based on the FESEM images (Fig.  2a), 
the AuNPs were spherical and had a uniform size distri-
bution of about 20 nm (analyzed with ImageJ software, 
Fig. 2b). The hydrodynamic diameter and polydispersity 
index of the nanoparticles were 23 nm and 0.1, respec-
tively (Fig.  2e). The spectral results revealed a narrow 
absorption peak at 523 nm, which is indicative of the 
presence of uniform, spherical AuNPs.

Characterization of antibody‑AuNPs conjugates
pH optimization
To determine the optimum pH for conjugation, the color 
change of the AuNPs at different pH values was recorded 
before and after the addition of antibodies, in the pres-
ence of 1.5 M NaCl. Fig.  3a shows the color change of 
the AuNP solution from red to purple after the addition 
of NaCl into the solution at a low pH value (pH = 6-7), 
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which resulted in the aggregation of the AuNPs. At pH 
values above 7.0 (pH = 8 or 9), no red-to-purple color 
change was observed; the color of the solution changed 
to dark red instead. The color changes of the solution 
became more visible after the addition of a designated 
concentration (see below) of antibodies to each Eppen-
dorf tube, in the presence of NaCl (Fig.  3b). The most 
optimal pH value for the conjugation procedure was 
found to be 8. The schematic of the mechanism is shown 
in Fig. 3c.

Optimal concentration for conjugation
At optimal pH, the optimal concentration of antibody 
was determined to be 1 μg/mL, which was the highest 
antibody concentration that maintained stable, conju-
gated AuNPs in solution. These results were obtained by 
observing the color change of AuNPs containing differ-
ent antibody concentrations in presence of NaCl. Fig. 4a 
shows pH-adjusted gold solutions containing different 
antibody concentrations (0-8 μg/mL) in the presence 
of NaCl. As shown in Fig.  4a, when the concentration 
of antibody increased from 0 to 0.8 μg/mL, only a slight 
color change was observed. Conversely, at concentra-
tions above 1 μg/mL, the color of the AuNPs changed 
from deep red to purple, which was indicative of the 
aggregation and precipitation of the AuNPs. To validate 
the result, the UV–VIS absorption spectra of the synthe-
sized AuNPs were measured and compared with each 
other (Fig.  4b). With the use of 1 μg/mL of antibody, 
the absorption peak at 523 nm increased and shifted 
toward longer wavelengths. The feature was indicative of 
the interaction of the antibodies with the surface of the 
AuNPs.

Based on the aforementioned results, antibody con-
jugation to the AuNPs was performed at 1 μg/mL and 
pH 8. Fig.  5a and b shows the FESEM image of the 
antibody-labeled AuNPs. Binding of the antibodies to 
AuNPs resulted in a slight increase in the size of the 
AuNPs. Clustering of the labeled AuNPs on the sub-
strate in FESEM image was ttributed to the change in 
surface energy of the nanoparticles after conjugation. 
Analysis of thesize of the antibody-labeled AuNPs in the 
FESEM images was performed using the ImageJ software 
(National Institute of Health, Bethesda, MD, USA). Most 
of the nanoparticles increased in size, up to 24 nm, due to 
the presence of adsorbed proteins on the surface of the 
nanoparticles; their average diameter was ~23.5nm. The 
absorption spectra of the AuNPs (Fig. 5c, red line) were 
used to compare the status of the nanoparticles before 
and after conjugation at optimal conditions. The absorp-
tion peak position of the conjugated AuNPs shifted from 
520-523 nm to 526-529 nm and the intensity of absorp-
tion increased at 523 nm.

Sensitivity of the LFTS
To determine the sensitivity of the LFTS, four different 
concentrations of gluten (0, 10, 20, 40, 70 ppm) were 
examined on the LFTS in triplicate. As shown in Fig. 6, 
a pink color appeared along the test line as the concen-
tration of gluten increased to 20 ppm. The color inten-
sity of the test lines increased with the addition of 40 
ppm and 70 ppm gluten. The test line disappeared when 
the gluten concentration was below 20 ppm. Therefore, 
the visual detection limit of the LFTS was 20 ppm. The 
time required to perform the test was within 15 min. 
For semi-quantitative detection, the intensity of the test 

Fig. 1  Schematic of structure and function of the lateral flow test strip. (a) The major components of the test strip. (b) Positive result and (c) 
negative result after addition of the food sample
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lines was evaluated using Image J software. A standard 
curve was plotted based on the percentage of the inten-
sity of the test line spiked sample (B) to the intensity of 
the test line of the blank sample (B0) against the gluten 
concentration.

Specificity of the LFTS
Different flour samples derived from wheat, oat, corn, 
barley, rice, chickpea, chestnut and almond flour were 
evaluated for examination of the specificity of the 
LFTS. No red line was observed on the test line except 
for the gluten-containing wheat and barley flour sam-
ples. In addition, a red band was formed for wheat flour 
sample as early as 2 min. This is because of the high 

Fig. 2  Synthesis and characterization of AuNPs with different methods (a and b). Schematic of the fabrication method. (c) FESEM images of the 
AuNPs without antibody; (d) Diagram of the size distribution of AuNPs based on measurement of the diameter of 800 AuNPs; (e) Dynamic light 
scattering analysis for determination of the z-average hydrodynamic diameter of the AuNPs
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Fig. 3  Optimization of pH for conjugation. Color changes AuNPs at different pH values (1: 6, 2: 7, 3: 8 and 4: 9) (a) without antibody (b) with 1 μg/
mL antibodies after adding NaCl. (c) Schematic of the aggregation of AuNPs via protein interaction in presence of NaCl

Fig. 4  Optimization of antibody concentration for conjugation. (a) Color changes of the AuNPs with different antibody concentrations (0.4, 0.6, 0.8, 
1, 2, 4, 6, 8 μg/mL) in the presence of NaClchanges were observed by the naked eye to determination optimal pH). (b) UV–Vis spectra of AuNPs with 
various antibody concentrations in presence of NaCl

Fig. 5  (a and b) FESEM images of antibody-conjugated AuNPs and (c) UV–Vis absorbance spectra of the AuNPs before (blue line) and after (red line) 
antibody conjugation, using the pre-determined optimal conditions for binding of antibodies to the AuNPs



Page 6 of 11Momeni et al. BMC Biomedical Engineering             (2022) 4:5 

concentration of gluten in the wheat flour sample (Fig. 7). 
Each sample was evaluated 15 times with the LFTS under 
the same experimental conditions. The results showed 
that only three of the 120 samples had false results ( bar-
ley flour : False- negative test result, rice and corn flour : 

False-positive test result). This was indicative of the high 
specificity of the experimental LFTS.

Discussion
In the present study, an experimental lateral flow assay 
was developed for the detection of gluten in commercial 
non-processed foods. Because the extraction method of 
gluten from raw and processed food matrices is different, 
the development of a single assay for both raw and pro-
cessed food materials will affect the accuracy of the assay. 
Accordingly, the present assay was developed only for 
non-processed foods. Other lateral flow assays such as 
dipsticks have been reported by Yin et al. [17]. However, 
in a lateral flow dipstick test, the sample is not applied 
directly on the strip and requires an additional incuba-
tion step [37, 38].

The authors synthesized AuNPs with an approximate 
diameter of 20 nm as the label for the LFTS. The reason 
for choosing AuNPs as the label was their biocompat-
ibility, high surface-to-volume ratio, ease of synthesis, 
considerable optical properties and chemical stability. 
Gold nanoparticles of this dimension were produced 
because of the ease of passage of nanoparticles through 
the nitrocellulose membrane pores and reduced back-
ground noise. According to the literature [39, 40], AuNPs 
with diameters larger than 30 nm become elliptical with 
polydisperse size distributions. These features adversely 
affect the control and reproducibility of the conjugation 
process. The labeling efficiency or ability of analyte detec-
tion by the AuNP-conjugated antibodies decreased with 
increasing AuNP dimensions. This could be attributed to 
bad penetration, steric hindrance or repulsion forces.

Successful conjugation is a critical step in lateral flow 
immunoassay. Stable conjugation helps to minimize 
nonspecific binding and false-positive results. Hence, 

Fig. 6  Sensitivity results of LFTS at different concentrations of gluten-containing samples

Fig 7  Specificity results of LFTS with different flour samples.
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it was necessary to optimize the conditions (i.e., pH of 
the AuNP solution, antibody concentration, NaCl con-
centration and temperature) for the preparation of a sta-
ble conjugate. Gold nanoparticles are stable in solution 
because of the balance between repulsive forces that are 
generated between the surface of the AuNP surface and 
intraparticle van der Waals attractive forces. The color of 
the AuNP solution was red when the AuNPs were stable. 
Nevertheless, parameters such as pH and electrolyte con-
centration could alter the negative charge on the AuNP 
surface and affect the intraparticle repulsive force. These 
alterations resulted in aggregation of the nanoparticles, 
which was accompanied by a color change of the nano-
particle-containing solution. In the present study, the 
optimum pH for the formation of stable conjugation was 
determined to be 8. The AuNPs were more susceptible to 
aggregation because of the protonation of the carboxyl 
group of citrate ions on surface nanoparticles at lower 
pH values. Weakening of the intraparticle repulsive force 
resulted in aggregation of the AuNPs upon the addition 
of an electrolyte. The AuNPs were more stable at pH > 
7 due to the greater intraparticle repulsive forces that 
resulted from deprotonation of citrate ions [41–43].

At low pH, the AuNPs became less table in the pres-
ence of antibodies. Nanoparticles aggregation occurred 
via protein-protein interaction for several reasons. 
Firstly, antibodies are likely to unfold under inappropri-
ate pH condition (pH ≤ 7). Secondly, the presence of a 
salt not only destabilizes the AuNPs but also increases 
the tendency of the antibodies to attract one another and 
aggregate. When a salt is added to a protein-containing 
AuNP solution, water molecules surround the Na+ ions 
instead of the protein molecules. As a result, aggregation 
of nanoparticles occurs by the attraction of the antibod-
ies to each other via their hydrophobic zones (Fig.  3c). 
Gold nanoparticles demonstrate local surface plasmon 
resonance absorption in the visible light region. Such an 
effect depends on the size, shape, aggregation state and 
local refractive index of the surrounding medium. The 
localized surface plasmon peak of the AuNPs is altered 
after bonding of the antibodies [44, 45]. In Fig. 4b reduc-
tion in absorption intensity occurred at antibody concen-
trations less than 0.8 μg/mL. This could be attributed to 
the instability of the AuNPs. The absorption peak at 523 
nm increased and shifted toward a longer wavelength at 
antibody concentrations of 0.8 μg/mL and 1 μg/mL. The 
redshift of the absorption peak could be attributed to 
changes in the local refractive index of the AuNPs [46], 
which could happen upon the attachment of antibodies 
to the nanoparticles.

When the antibody concentration was higher than 1 
μg/mL, the absorption peaks became broadened with 
several peaks appeared at longer wavelengths (Fig.  4b). 

This could be caused by the formation of AuNP aggre-
gates in solution. According to the literature [47], 
aggregation of AuNPs is dependent on the protein con-
centration. At low antibody concentration (i.e. 0.4 to 0.8 
μg/mL), the number of AuNPs was more than the num-
ber of antibodies and small aggregates formed via bridg-
ing of antibodies between the AuNPs. When antibody 
concentration reached 1 μg/mL, the solution color began 
to change from dark red to purple as a result of the for-
mation of large aggregates in the solution. Although the 
surface of the AuNPs are covered by antibodies, there 
were still locations where additional antibodies may be 
attached in a time-dependent manner. Addition of NaCl 
reduced the interaction time of antibodies with nano-
particles and other antibodies. Conversely, addition of 
a blocking agent such as bovine serum albumin shortly 
after the incubation of the antibodies with AuNPs pre-
vents the nanoaprticles from aggregating due to nega-
tive net charges at pH 8 and the hydrophilicity of bovine 
serum albumin. When the antibody concentration was 
beyond 1 μg/mL, the solution turned dark purple and 
eventually became colorless. This could be attributed to 
the desorption of antibodies from the gold nanoparticle 
surface, with the formation of large aggregates of anti-
bodies on AuNP surface that eventually induced aggre-
gation of the nanoparticles via their own hydrophobic 
regions.

Table  1 compares the present LFTS assay with other 
assays. In the present work, the LFTS sensitivity was opti-
mized to 20 ppm to enable facile application by untrained 
individuals on-site without need to check their test 
results with standard charts or a color scale card, or the 
use of an image analyzer for concentrations lower than 
20 ppm. This impermissible gluten content (< 20 ppm) 
is determined based on the observation of colored lines 
in the test and control zones by the naked eye. Based on 
the literature [54–56], the sensitivity of this LFTS is in an 
appropriate range. Evaluation of the food samples with 
the use of 120 LFTS demonstrated the high specificity of 
the present experimental LFTS. The method may have 
practical clinical applications as well, as a user-friendly, 
rapid and low-cost diagnostic test for monitoring gluten 
intae in patients with celiac disease.

Conclusions
In the present work, a paper-based lateral flow immu-
noassay was developed for monitoring the level of glu-
ten in non-processed food. The method may be used for 
rapid and accurate detection of gluten in 15 min or less. 
The limit of detection of this assay was 20 ppm, which is 
equal to adopted threshold based on the Codex Stand-
ard 118-1979. The amount of antibodies at the test line, 
the amount of the conjugated particles on the conjugate 
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pad, the size of the AuNPs, the dimensions of the strip 
and the position of the test and control lines affect the 
performance and sensitivity of the developed assay. Here, 
the highest concentration of antibodies that enabled the 
AuNPs to remain stable in the presence of NaCl was cho-
sen as optimal antibody concentration. The activity of the 
conjugates was confirmed based on proper performance 
of the LFTS. The experimental LFTS with high sensitiv-
ity and specificity may be used as an alternative to other 
multistage and more time-consuming methods such as 
ELISA for detection of gluten in non-processed foods.

Methods
Hydrogen tetrachloroauratetrihydrate (HAuCl4·3H2O) 
was purchased from Millipore Sigma (Shanghai, China). 
Nitrocellulose membranes (Hi-Flow plus 120, Merck 
Millipore), sample pad (cellulose fiber, Merck Millipore), 
conjugate pad (cellulose fiber, Merck Millipore), absor-
bent pads, adhesive backing cards and goat anti-mouse 
IgG were obtained from Rojan Azma Co (Tehran, Iran). 
Trisodium citrate dehydrate, bovine serum albumin, 
Tween-20, phosphate buffer solution, PEG20000, glucose 
and 0.22 μm filters were purchased from Merck Millipore 
(Burlington, MA, USA). Gliadin Monoclonal Antibody 
(14D5) was purchased from Thermo Fisher Scientific 
(Waltham, MA, USA).

Synthesis of AuNPs
To obtain the monodisperse AuNPs solution, all glass-
wares and magnets were washed with aqua regia (3 HCl: 
HNO3 vol/vol) and rinsed in distilled water. All solutions 
were filtered through a 0.22 μm syringe filter. A silicone 
oil bath was used for uniform heating. The AuNP solu-
tions were synthesized by citrate reduction method [57]. 
Briefly, 3 mL of 1% trisodium citrate solution was added 
to 95 mL of near-boiling solution of 0.01% tetrachloroau-
ric acid under vigorous stirring. After 20 min., the color 
of the solution turned to red and after stirring for another 

10 min., the solution was stored under refrigeration at 4 
°C in the dark. The synthesized AuNPs were character-
ized by field emission scanning electron microscopy 
(FESEM; MIRA3 Tescan, Kohoutovice, Caech Repub-
lic), Nano-Drop ND-1000 Spectrophotometer (Thermo 
Fisher Scientific Inc) and dynamic light scattering (DLS, 
VASCO2, Cordouan Technologies, Pessac, France).

Preparation of AuNP‑conjugated antibody
Binding of antibodies to the surface of AuNPs was per-
formed by passive adsorption [58, 59]. Despite the sim-
plicity of this method, the control of optimal conjugation 
conditions such as pH and antibody concentration is 
important for preparing a stable conjugate.

To determine the optimized pH, the pH value of the 
AuNPs was adjusted to different levels (6, 7, 8, 9, 10) by 
addition of 0.2 M K2CO3. Then, 100 μL of gliadin anti-
body solution (1 μg/mL) was added to Eppendorf tubles 
containing 1 mL of AuNPs, under rotating for 30 min. 
Subsequently, 40 μL of NaCl (1.5 M) was added to each 
tube and incubated for 15 min, with careful monitoring 
of the color change. Optimal pH was selected based on 
the color change of the solution.

To determine the optimal antibody concentration, 
100  μL of different concentrations of antibody (0.4 μg/
mL, 0.8 μg/mL, 1 μg/mL, 2 μg/mL, 4 μg/mL, 6 μg/mL and 
8 μg/mL) was added to 1mL of AuNPs at the optimized 
pH and incubated for 30 min. Then, 40 μl of NaCl (1.5 M) 
was added to the solutions and incubated for another 15 
min. The absorbance of solutions before and after conju-
gation was measured by UV-VIS spectrophotometry.

For conjugation of antibodies to the AuNPs, the opti-
mized concentration of antibodies was added dropwise 
to the pH-adjusted AuNPs and incubated at room tem-
perature for 1 h. Bovine serum albumin (10%) was added 
to block the remaining surface of the AuNPs. The mix-
ture was centrifuged (10000 rpm for 30 min at 4 °C) to 
remove supernatant. Centrifugation was repeated twice. 

Table 1  Comparison of the present LFTS assay with other lateral flow assay

Type of assay Detection limit of gluten (ppm) Type of antibody Ref.

Present experimental LFTS 20 Gliadin Monoclonal Antibody (14D5) -

Barcode-style LFA dipstick 50 - 100 Anti-gliadin IgY [17]

2B9- based lateral flow device 2 Monoclonal antibody against deamidated gluten (2B9) [48]

RIDA®QUICK Gliadin dipstick 2.5 R5 (Mendez) monoclonal antibody [49]

GlutenTox Sticks 3 G12 monoclonal antibody [50]

3M™ Gluten Protein Rapid Kit 5.0 Polyclonal antibody [51]

Reveal® 3-D for Gluten 10 401.21 monoclonal antibody (Skerritt) [52]

EZ gluten® 10 401.21 monoclonal antibody (Skerritt) [53]

Proteon Gluten Express Dipstick 3 G12 monoclonal antibody [53]
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The obtained pellet was re-suspended in 1% bovine 
serum albumin and stored at 4 °C until use.

Preparation of LFTS
The test strip consisted of a sample pad, conjugate pad, 
nitrocellulose membrane, absorbent pad and adhesive 
backing cards. These components were cut with dimen-
sions 5 mm × 20 mm, 5 mm × 5 mm, 5 mm × 25 mm, 
5 mm × 30 mm, 5 mm × 75 mm, respectively. After 
determining the optimal antibody concentration, Gliadin 
Monoclonal Antibody (14D5) (60 μg/mL) and goat anti-
mouse IgG (100 μg/mL) were dispensed at a distance of 6 
mm from each other onto the nitrocellulose membrane to 
form the test and control lines, respectively. The pH level 
and the proportion of the components in the blocking 
buffer was optimized during pre-treatment of the sample 
pad. The sample pad was soaked in phosphate-buffered 
saline containing 5 % (w/v) bovine serum albumin, 0.5 % 
Tween 20, 5 % polyethylene glycol and 0.05 % (w/v) NaN3 
for 30 min. The treated sample pad was rinsed with phos-
phate-buffered saline and dried overnight at 37°C. The 
conjugate pad was made by soaking of the pad in the con-
jugate solution and incubated overnight at 37°C. All pads 
were ultimately laminated according to Fig. 1a.

Sample preparation and test procedures
Gliadin was extracted from the flour samples as follows. 
One gram of flour was stirred with 10 mL 60% (v/v) 
ethanol solution to create a homogeneous solution. The 
solution was centrifuged at 6000 rpm for 10 min at room 
temperature and the supernatant was diluted with phos-
phate-buffered saline (pH 7.4; 1:20 v/v).

Testing was performed by the application of 100 μL of 
sample solution on the sample pad. The latter was moved 
to contact the conjugate pad. In the presence of the ana-
lyte, a complex was formed between gliadin and the 
AuNP-labeled gliadin antibody at the conjugate pad. The 
produced complex and additional AuNP-labeled antibod-
ies moved through the membrane by capillary effect and 
were subsequently captured by immobilized antibodies 
on the test line (detection zone) and the control line, with 
the appearance of two visible lines on the membrane. In 
the absence of the analyte, only the control line was vis-
ible. Excess solution was absorbed by the absorbent pad.

Specificity and sensitivity of LFTS
Gluten from the designated food samples was extracted 
with 60% (v/v) ethanol to produce standard solutions 
with final gluten concentrations of 0, 10, 20, 40 and 
70 ppm. The supernatant was filtered through filter 
paper with 0.45 μm pore size. The extracted sample was 
diluted with phosphate-buffered saline and used for 

the determination of the sensitivity of the LFTS. The 
images of the strips were captured using a camera and 
analyzed using ImageJ software. The specificity of the 
assay was examined using the eight other flour sam-
ples (wheat, oat, corn, barley, rice, chickpea, chestnut, 
almond flour). Gluten was extracted from these good 
samples as mentioned above and the color intensity of 
the test lines was determined using ImageJ software.
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