Kharati M, Rabiee M, Rostami-Nejad M, Aghamohammadi E, Asadzadeh-Aghdaei H, Zali MR, et al. Development of a Nano Biosensor for Anti-Gliadin Detection for Celiac Disease Based on Suspension Microarrays. Biomed Phys Eng Express. 2020;6. https://doi.org/10.1088/2057-1976/aba7ca.
Casella G, Pozzi R, Cigognetti M, Bachetti F, Torti G, Cadei M, et al. Mood Disorders and Non-Celiac Gluten Sensitivity. Minerva Gastroenterol Dietol. 2017;63:32–7.
Google Scholar
Lexhaller B, Ludwig C, Scherf KA. Identification of Isopeptides Between Human Tissue Transglutaminase and Wheat, Rye, and Barley Gluten Peptides. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-64143-9.
Dahal-Koirala S, Neumann RS, Jahnsen J, Lundin KEA, Sollid LM. On the Immune Response to Barley in Celiac Disease: Biased and Public T-Cell Receptor Usage to a Barley Unique and Immunodominant Gluten Epitope. Eur J Immunol. 2020;50:256–69. https://doi.org/10.1002/eji.201948253.
Article
Google Scholar
Falcomer AL, Santos Araújo L, Farage P, Santos Monteiro J, Yoshio Nakano E, Puppin Zandonadi R. Gluten Contamination in Food Services and Industry: A Systematic Review. Crit Rev Food Sci Nutr. 2020;60:479.
Article
Google Scholar
Garrido-Maestu A, Azinheiro S, Fuciños P, Carvalho J, Prado M. Highly Sensitive Detection of Gluten-Containing Cereals in Food Samples by Real-Time Loop-Mediated Isothermal AMPlification (QLAMP) and Real-Time Polymerase Chain Reaction (QPCR). Food Chem. 2018;246:156–63. https://doi.org/10.1016/j.foodchem.2017.11.005.
Article
Google Scholar
Scherf KA, Wieser H, Koehler P. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD). J Agric Food Chem. 2016;64:7622–31. https://doi.org/10.1021/acs.jafc.6b02512.
Article
Google Scholar
Geisslitz S, Ludwig C, Scherf KA, Koehler P. Targeted LC-MS/MS Reveals Similar Contents of α-Amylase/Trypsin-Inhibitors as Putative Triggers of Nonceliac Gluten Sensitivity in All Wheat Species except Einkorn. J Agric Food Chem. 2018;66:12395–403. https://doi.org/10.1021/acs.jafc.8b04411.
Article
Google Scholar
López-López L, Miranda-Castro R, de los Santos Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Disposable Electrochemical Aptasensor for Gluten Determination in Food. Sens Actuators B. 2017;241:522–7. https://doi.org/10.1016/j.snb.2016.10.112.
Article
Google Scholar
Marín-Barroso E, Messina GA, Bertolino FA, Raba J, Pereira SV. Electrochemical Immunosensor Modified with Carbon Nanofibers Coupled to a Paper Platform for the Determination of Gliadins in Food Samples. Anal Methods. 2019;11:2170–8. https://doi.org/10.1039/c9ay00255c.
Article
Google Scholar
Svigelj R, Dossi N, Pizzolato S, Toniolo R, Miranda-Castro R, de los Santos Álvarez N, et al. Truncated Aptamers as Selective Receptors in a Gluten Sensor Supporting Direct Measurement in a Deep Eutectic Solvent. Biosens Bioelectron. 2020;165. https://doi.org/10.1016/j.bios.2020.112339.
Qian Y, Preston K, Krokhin O, Mellish J, Ens W. Characterization of Wheat Gluten Proteins by HPLC and MALDI TOF Mass Spectrometry. J Am Soc Mass Spectrom. 2008;19:1542–50. https://doi.org/10.1016/j.jasms.2008.06.008.
Article
Google Scholar
Bruun SW, Søndergaard IB, Jacobsen S. Analysis of Protein Structures and Interactions in Complex Food by Near-Infrared Spectroscopy. 1. Gluten Powder. J Agric Food Chem. 2007;55:7234–43. https://doi.org/10.1021/jf063680j.
Article
Google Scholar
Diaz-Amigo C, Popping B. Accuracy of ELISA Detection Methods for Gluten and Reference Materials: A Realistic Assessment. J Agric Food Chem. 2013;61:5681–8. https://doi.org/10.1021/jf3046736.
Article
Google Scholar
Slot IDB, van der Fels-Klerx HJ, Bremer MGEG, Hamer RJ. Immunochemical Detection Methods for Gluten in Food Products: Where Do We Go from Here? Crit Rev Food Sci Nutr. 2016;56:2455–66. https://doi.org/10.1080/10408398.2013.847817.
Article
Google Scholar
Hnasko RM, Jackson ES, Lin AV, Haff RP, McGarvey JA. A Rapid and Sensitive Lateral Flow Immunoassay (LFIA) for the Detection of Gluten in Foods. Food Chem. 2021;355. https://doi.org/10.1016/j.foodchem.2021.129514.
Yin H-Y, Chu P-T, Tsai W-C, Wen H-W. Development of a Barcode-Style Lateral Flow Immunoassay for the Rapid Semi-Quantification of Gliadin in Foods. Food Chem. 2016;192:934–42.
Article
Google Scholar
Kiani M, Bagherzadeh M, Meghdadi S, Rabiee N, Abbasi A, Schenk-Joß K, et al. Development of a Novel Carboxamide-Based off-on Switch Fluorescence Sensor: Hg2+, Zn2+and Cd2+. New J Chem. 2020. https://doi.org/10.1039/d0nj02595j.
Moshayedi HR, Rabiee M, Rabiee N. Graphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases. Iran J Chem Chem Eng. 2020;39:93–105.
Google Scholar
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-Care Microfluidic Devices for Pathogen Detection. Biosens Bioelectron. 2018;117:112–28.
Article
Google Scholar
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, et al. Optical Assays Based on Colloidal Inorganic Nanoparticles. Analyst. 2018;143:3249–83.
Article
Google Scholar
Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-Based Lateral Flow Immunochromatographic Strip with Nanoparticles as Reporters for Detection: A Review. Biosens Bioelectron. 2016;75:166–80. https://doi.org/10.1016/j.bios.2015.08.032.
Article
Google Scholar
Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic Methods in Food Analysis. TrAC - Trends Anal Chem. 2014;55:81–93.
Article
Google Scholar
Rabiee N, Bagherzadeh M, Rabiee M. A Perspective to the Correlation Between Brain Insulin Resistance and Alzheimer: Medicinal Chemistry Approach. Curr Diabetes Rev. 2018;15:255–8. https://doi.org/10.2174/1573399814666181031154817.
Article
Google Scholar
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Aldhaher A, Ramakrishna S, et al. Green Synthesis of ZnO NPs via Salvia Hispanica: Evaluation of Potential Antioxidant, Antibacterial, Mammalian Cell Viability, H1N1 Influenza Virus Inhibition and Photocatalytic Activities. J Biomed Nanotechnol. 2020;16:456–66. https://doi.org/10.1166/jbn.2020.2916.
Article
Google Scholar
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, et al. Improved Green Biosynthesis of Chitosan Decorated Ag- and Co3O4-Nanoparticles: A Relationship between Surface Morphology, Photocatalytic and Biomedical Applications. Nanomedicine. 2021;32. https://doi.org/10.1016/j.nano.2020.102331.
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Aldhaher A, et al. High-Gravity-Assisted Green Synthesis of NiO-NPs Anchored on the Surface of Biodegradable Nanobeads with Potential Biomedical Applications. J Biomed Nanotechnol. 2020;16:520–30. https://doi.org/10.1166/jbn.2020.2904.
Article
Google Scholar
Chu PT, Lin CS, Chen WJ, Chen CF, Wen HW. Detection of Gliadin in Foods Using a Quartz Crystal Microbalance Biosensor That Incorporates Gold Nanoparticles. J Agric Food Chem. 2012;60:6483–92. https://doi.org/10.1021/jf2047866.
Article
Google Scholar
Ren W, Cho IH, Zhou Z, Irudayaraj J. Ultrasensitive Detection of Microbial Cells Using Magnetic Focus Enhanced Lateral Flow Sensors. Chem Commun. 2016;52:4930–3. https://doi.org/10.1039/c5cc10240e.
Article
Google Scholar
Toudeshkchoui MG, Rabiee N, Rabiee M, Bagherzadeh M, Tahriri M, Tayebi L, et al. Microfluidic Devices with Gold Thin Film Channels for Chemical and Biomedical Applications: A Review. Biomed Microdevices. 2019;21. https://doi.org/10.1007/s10544-019-0439-0.
Shi CY, Deng N, Liang JJ, Zhou KN, Fu QQ, Tang Y. A Fluorescent Polymer Dots Positive Readout Fluorescent Quenching Lateral Flow Sensor for Ractopamine Rapid Detection. Anal Chim Acta. 2015;854:202–8. https://doi.org/10.1016/j.aca.2014.11.005.
Article
Google Scholar
Vafajoo A, Rostami A, Foroutan Parsa S, Salarian R, Rabiee N, Rabiee G, et al. Multiplexed Microarrays Based on Optically Encoded Microbeads. Biomed Microdevices. 2018;20. https://doi.org/10.1007/s10544-018-0314-4.
Tashkhourian J, Hormozi-Nezhad MR, Khodaveisi J, Dashti R. A Novel Photometric Glucose Biosensor Based on Decolorizing of Silver Nanoparticles. Sens Actuators B. 2011;158:185–9. https://doi.org/10.1016/j.snb.2011.06.002.
Article
Google Scholar
Abedi E, Pourmohammadi K. The Effect of Redox Agents on Conformation and Structure Characterization of Gluten Protein: An Extensive Review. Food Sci Nutr. 2020;8:6301–19.
Article
Google Scholar
Xu J, Zhang Y, Wang W, Li Y. Advanced Properties of Gluten-Free Cookies, Cakes, and Crackers: A Review. Trends Food Sci Technol. 2020;103:200–13.
Article
Google Scholar
Cui T, Wu T, Liu R, Sui W, Wang S, Zhang M. Effect of Degree of Konjac Glucomannan Enzymatic Hydrolysis on the Physicochemical Characteristic of Gluten and Dough. ACS Omega. 2019;4:9654–63. https://doi.org/10.1021/acsomega.9b00061.
Article
Google Scholar
Chekin F, Singh SK, Vasilescu A, Dhavale VM, Kurungot S, Boukherroub R, et al. Reduced Graphene Oxide Modified Electrodes for Sensitive Sensing of Gliadin in Food Samples. ACS Sensors. 2016;1:1462–70. https://doi.org/10.1021/acssensors.6b00608.
Article
Google Scholar
Daikuzono CM, Shimizu FM, Manzoli A, Riul A, Piazzetta MHO, Gobbi AL, et al. Information Visualization and Feature Selection Methods Applied to Detect Gliadin in Gluten-Containing Foodstuff with a Microfluidic Electronic Tongue. ACS Appl Mater Interfaces. 2017;9:19646–52. https://doi.org/10.1021/acsami.7b04252.
Article
Google Scholar
Krystek P. A Review on Approaches to Bio Distribution Studies about Gold and Silver Engineered Nanoparticles by Inductively Coupled Plasma Mass Spectrometry. Microchem J. 2012;105:39–43. https://doi.org/10.1016/j.microc.2012.02.008.
Article
Google Scholar
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J Phys Condens Matter. 2017;29. https://doi.org/10.1088/1361-648X/aa60f3.
Yu L, Andriola A. Quantitative Gold Nanoparticle Analysis Methods: A Review. Talanta. 2010;82:869–75.
Article
Google Scholar
Sengani M, Grumezescu AM, Rajeswari VD. Recent Trends and Methodologies in Gold Nanoparticle Synthesis – A Prospective Review on Drug Delivery Aspect. OpenNano. 2017;2:37–46.
Article
Google Scholar
Upadhyayula VKK. Functionalized Gold Nanoparticle Supported Sensory Mechanisms Applied in Detection of Chemical and Biological Threat Agents: A Review. Anal Chim Acta. 2012;715:1–18.
Article
Google Scholar
Tam JO, de Puig H, Yen CW, Bosch I, Gómez-Márquez J, Clavet C, et al. A Comparison of Nanoparticle-Antibody Conjugation Strategies in Sandwich Immunoassays. J Immunoassay Immunochem. 2017;38:355–77. https://doi.org/10.1080/15321819.2016.1269338.
Article
Google Scholar
Barbosa AI, Barreto AS, Reis NM. Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing. ACS Appl Bio Mater. 2019;2:2780–90. https://doi.org/10.1021/acsabm.9b00214.
Article
Google Scholar
Elahi N, Kamali M, Baghersad MH. Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta. 2018;184:537–56.
Article
Google Scholar
Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics. 2011;6:491–506. https://doi.org/10.1007/s11468-011-9228-1.
Article
Google Scholar
Masiri J, Benoit L, Katepalli M, Meshgi M, Cox D, Nadala C, et al. Novel Monoclonal Antibody-Based Immunodiagnostic Assay for Rapid Detection of Deamidated Gluten Residues. J Agric Food Chem. 2016;64:3678–87. https://doi.org/10.1021/acs.jafc.5b06085.
Article
Google Scholar
Lacorn M, Scherf K, Uhlig S, Weiss T. Determination of Gluten in Processed and Nonprocessed Corn Products by Qualitative R5 Immunochromatographic Dipstick: Collaborative Study, First Action 2015.16. J AOAC Int. 2016;99:730–7.
Article
Google Scholar
Moreno MDL, Cebolla Á, Munõz-Suano A, Carrillo-Carrion C, Comino I, Pizarro Á, et al. Detection of Gluten Immunogenic Peptides in the Urine of Patients with Coeliac Disease Reveals Transgressions in the Gluten-Free Diet and Incomplete Mucosal Healing. Gut. 2017;66:250–7. https://doi.org/10.1136/gutjnl-2015-310148.
Article
Google Scholar
Laube T, Kergaravat SV, Fabiano SN, Hernández SR, Alegret S, Pividori MI. Magneto Immunosensor for Gliadin Detection in Gluten-Free Foodstuff: Towards Food Safety for Celiac Patients. Biosens Bioelectron. 2011;27:46–52. https://doi.org/10.1016/j.bios.2011.06.006.
Article
Google Scholar
Alvarez PA, Mongeon VJ, Boye JI. Characterization of a Gluten Reference Material: Wheat-Contaminated Oats. J Cereal Sci. 2013;57:418–23. https://doi.org/10.1016/j.jcs.2013.01.006.
Article
Google Scholar
Scherf KA, Poms RE. Recent Developments in Analytical Methods for Tracing Gluten. J Cereal Sci. 2016;67:112–22. https://doi.org/10.1016/j.jcs.2015.08.006.
Article
Google Scholar
Yu JM, Lee JH, Park JD, Choi YS, Sung JM, Jang HW. Analyzing Gluten Content in Various Food Products Using Different Types of Elisa Test Kits. Foods. 2021;10. https://doi.org/10.3390/foods10010108.
Garcia-Calvo E, García-García A, Madrid R, Martin R, García T. From Polyclonal Sera to Recombinant Antibodies: A Review of Immunological Detection of Gluten in Foodstuff. Foods. 2021;10.
Liu J, Meenu M, Xu B. Effect of Unripe Banana Flour and Wheat Gluten on Physicochemical Characteristics and Sensory Properties of White Salted Noodles. J Food Process Preserv. 2020. https://doi.org/10.1111/jfpp.14513.
Xiong Z, Chen X, Liou P, Lin M. Development of Nanofibrillated Cellulose Coated with Gold Nanoparticles for Measurement of Melamine by SERS. Cellulose. 2017;24:2801–11. https://doi.org/10.1007/s10570-017-1297-7.
Article
Google Scholar
Di Nardo F, Cavalera S, Baggiani C, Giovannoli C, Anfossi L. Direct vs Mediated Coupling of Antibodies to Gold Nanoparticles: The Case of Salivary Cortisol Detection by Lateral Flow Immunoassay. ACS Appl Mater Interfaces. 2019;11:32758–68. https://doi.org/10.1021/acsami.9b11559.
Article
Google Scholar
Sharafeldin M, McCaffrey K, Rusling JF. Influence of Antibody Immobilization Strategy on Carbon Electrode Immunoarrays. Analyst. 2019;144:5108–16. https://doi.org/10.1039/c9an01093a.
Article
Google Scholar