Many new technologies that have revolutionised biomedical engineering require the coalition of previously independent communities. 3D bioprinting of tissues and organs brings together methods from cell biology, biomaterials, nanotechnology and engineering and is being used for the transplantation of tissues, including skin, bone, muscle, soft tissue, cartilage and others [6, 7]. The concept of tissue and disease modelling is being driven towards drug discovery and toxicology studies, aiming to increase the yield of drug testing by tackling limitations of current cell and animal models [8].
New approaches in natural and synthetic biomaterials have redefined bioelectronics. Silk fibroins and other unconventional interfaces can form flexible electronics and challenge the use of silicon-based technologies. For biomedical applications, these new approaches present advantages not only due to their biocompatibility and low cost, but also for their electromechanical and optical virtues [9]. Implantable probes are being redesigned so that they facilitate long term stability and high resolution, without perturbing the biological system or creating an immune response. Such technologies are now able to facilitate recordings of single neurons in vivo, in a chronically stable manner, with applications to the restoration of vision and retinal prosthetics [10].
For many years biomedical imaging has been connecting microscopic discoveries with macroscopic observations. Photoacoustic tomography (PAT) is now able to image large spatial scales, from organelles to small animals, at very high speeds [11]. In fact, single-shot real-time imaging can operate at 10 trillion frames per second and is finding applications in breast cancer diagnosis [12, 13].
In the field of medical robotics, new approaches combine machine learning and artificial intelligence to strengthen the clinician’s decision making. Others are leveraging augmented reality (AR) to facilitate better immersion and more natural surgical workflows for computer assisted orthopaedic surgery [14].
BMC Biomedical Engineering celebrates the interdisciplinary nature of the field. In order to navigate the wide range of biomedical engineering research, the Journal is structured in six editorial sections.
-
Biomaterials, nanomedicine and tissue engineering
-
Medical technologies, robotics and rehabilitation engineering
-
Biosensors and bioelectronics
-
Computational and systems biology
-
Biomechanics
-
Biomedical Imaging
We are delighted to welcome our founding Section Editors along with a growing international group of Editorial board Members [15, 16]. The Journal is supported by an expert Editorial Advisory group of senior engineers and scientists, which is chaired by Distinguished Professor Sang Yup Lee. Together with the in-house Editor, this group will provide academic leadership and expertise and will work together to transverse into multiple clinical and engineering disciplines. The Editorial Board will keep growing and developing to reflect and adapt to the nature of this diverse community.
Biomaterials, nanomedicine and tissue engineering section
This section primarily focuses on the development of biofunctional tissue substitutes, which possess the highest level of biomimicry, through recapitulation of nature’s innate sophistication and thorough processes. It considers research, methods, clinical trials, leading opinion and review articles on the development, characterisation and application of nano- and micro- biofunctional biomaterials, cell-assembled tissue substitutes, diagnostic tools, microfluidic devices and drug/gene discovery and delivery methods. Manuscripts focusing on permanently differentiated, engineered and stem cell biology and application are welcome. This section will place a substantial focus on clinical translation and technologies that advance the current status-quo. As such, articles that enhance the scalability and robustness of tissue engineering methodologies, or that enable new and improved industrial or clinical applications of biomedical engineering discoveries, tools and technologies are strongly encouraged.
Medical technologies, robotics and rehabilitation engineering section
This section seeks to represent research in engineering that encompasses a wide range of interests across medical specialties, including orthopaedic, cardiovascular, musculoskeletal, craniofacial, neurological, urologic and other medical technologies. It will consider research on medical robotics, computer assisted technologies, medical devices, e/m-health and other medical instrumentation. It aims to improve the prevention, diagnosis, intervention and treatment of injury or disease and it welcomes articles that represent new approaches to engineering that may be useful in the care of patients. Technical and practical aspects of rehabilitation engineering, from concept to clinic and papers on improving the quality of life of patients with a disability are encouraged. The section also seeks to represent clinically important research that is based on new and emerging technologies. This could include clinical studies of new approaches to robotic-assisted surgery, clinical studies of new devices, or other studies that are close to patient care or rehabilitation.
Biosensors and bioelectronics section
This section considers articles on the theory, design, development and application on all aspects of biosensing and bioelectronics technologies. The section will consider approaches that combine biology and medicine with sensing and circuits and systems technologies on a wide variety of subjects, including lab-on-chips, microfluidic devices, biosensor interfaces, DNA chips and bioinstrumentation. It also considers articles on the development of computational algorithms (such as deep learning, reinforcement learning, etc.) that interpret the acquired signals, hardware acceleration and implementation of the algorithms, brain-inspired or brain-like computational schemes, and bioelectronics technologies that can have a wide impact in the research and clinical community. Articles on implantable and wearable electronics, low-power, wireless and miniaturised imaging systems, organic semiconductors, smart sensors and neuromorphic circuits and systems are strongly encouraged.
Computational and systems biology section
Computational, integrative and systemic approaches are at the heart of biomedical engineering. This section considers papers on all aspects of mathematical, computational, systems and synthetic biology that result in the improvement of patient health. Integrative and multi-scale approaches, in the network and mechanism-based definition of injury and disease, or its prevention, diagnosis and treatment are welcome. Papers on high precision, interactive and personalised medicine, on digital/mobile health, on complex/big data analytics and machine learning, or on systemic and informatics approaches in a healthcare or clinical setting are encouraged.
Biomechanics section
This section represents the interdisciplinary field of biomechanics and investigates the relationship of structure with function in biological systems from the micro- to the macro- world. It considers papers on all aspects of analytical and applied biomechanics at all scales of observation, that improve the diagnosis, therapy and rehabilitation of patients or that advance their kinetic performance. The topics of interest range from mechanobiology and cell biomechanics to clinical biomechanics, orthopaedic biomechanics and human kinetics. Articles on the mechanics and wear of bones and joints, artificial prostheses, body-device interaction, musculoskeletal modelling biomechanics and solid/fluid computational approaches are strongly encouraged.
Biomedical imaging section
Biomedical imaging has been connecting microscopic discoveries with macroscopic observations for the diagnosis and treatment of disease and has seen considerable advances in recent years. This section will consider articles on all biomedical imaging modalities including medical imaging (MRI, CT, PET, ultrasound, x-ray, EEG/MEG), bio-imaging (microscopy, optical imaging) and neuroimaging across all scales of observation. Its primary focus will be to foster integrative approaches that combine techniques in biology, medicine, mathematics, computation, hardware development and image processing. Articles on new methodologies or on technical perspectives involving novel imaging concepts and reconstruction methods, machine learning, sparse sampling and statistical analysis tool development are encouraged.